Министерство образования Республики Беларусь

Учреждение образования «Брестский государственный технический университет» Кафедра строительной механики

Задания к расчетно-проектировочным работам по дисциплине «**Строительная механика**»

для студентов специальностей 1-70 02 01 «ПГС» (на базе среднего специального образования); 1-70 02 02 «Экспертиза и управление недвижимостью».

УДК 624.04

Работа содержит задания к расчётно-проектировочным работам по дисциплине «Строительная механика» для студентов специальностей

1-70 02 01 «ПГС» (на базе среднего специального образования);

1-70 02 02 «Экспертиза и управление недвижимостью».

Составитель: И.И. Севостьянова, доцент, канд. техн. наук

Рецензент: главный инженер республиканского унитарного научно-исследовательского и опытно-конструкторского предприятия «Научно-технический центр» канд. техн. наук В.Н. ДЕРКАЧ

- © Учреждение образования «Брестский государственный технический университет» 2007 Требования к оформлению работ
- 1. Исходные данные для решения задач выбираются из таблиц исходных данных в соответствии с заданным шифром.
- 2. Работы оформляются в соответствии со стандартом университета на листах размером 297х210 (формат А4). Текст, чертежи, расчёты необходимо выполнять карандашом, тушью, в компьютерном наборе или комбинировано.

- 3. При решении задачи необходимо вычертить заданную схему и указать на ней все размеры и нагрузки в буквенном обозначении и их численные значения (например: $l_1=12 \, M, P=15 \, \kappa H$). Решение задачи должно сопровождаться краткими последовательными пояснениями. На эпюрах должны быть проставлены значения всех характерных ординат. Все чертежи и эпюры должны быть обозначены.
- 4. Все чертежи должны быть выполнены с соблюдением масштаба и равномерно располагаться по всей площади листа.

Задание № 1

Расчёт статически определимой многопролётной балки и простой рамы

<u>Для многопролётной балки требуется:</u>

- 1. Выполнить кинематический анализ системы и составить этажную схему.
- 2. Рассмотрев равновесие отдельных балок, определить опорные реакции и построить эпюры изгибающих моментов и поперечных сил.

- 3. Построить линии влияния трех опорных реакций (по выбору), изгибающих моментов и поперечных сил для сечения 1 и 2.
- 4. По линии влияния от постоянной нагрузки определить значения внутренних сил и сравнить с найденными аналитически в пункте 2.

Для простой рамы требуется:

- 1. Определить опорные реакции, проверить их.
- 2. Построить эпюры изгибающих моментов, поперечных и продольных сил.
- 3. Выполнить проверки равновесия узлов рамы по эпюрам внутренних усилий.

Таблица исходных данных для балок

Первая цифра шифра (схема балки)	Р ₁ , кН	Вторая цифра шифра (схема нагрузки)	I ₁ , М	Р ₂ , кН	Третья цифра шифра	I ₂ , М	q ₁ , кН/м	Четвёртая цифра шифра	I ₃ , М	q ₂ , кН/м
1	5,2	1	12	7,2	1	9,4	2,4	1	11,6	2,0
2	5,4	2	9,8	7,4	2	8,8	2,6	2	6,8	2,5
3	5,6	3	9,4	7,6	3	11,6	2,8	3	10	3,5
4	5,8	4	8,8	7,8	4	7,6	3,0	4	12,4	3,6
5	6,0	5	11,6	8,0	5	6,8	3,2	5	9,4	1,8
6	6,2	6	7,6	8,2	6	10	3,4	6	8,8	2,2
7	6,4	7	6,8	8,4	7	12	3,6	7	7,6	3,8
8	6,6	8	8,4	8,6	8	12,4	3,8	8	10,4	4,0
9	6,8	9	10,4	8,8	9	7,2	4,0	9	10,8	2,4
0	5,0	0	10	7,0	0	10,4	2,2	0	7,2	1,5

Схемы балок и загружений

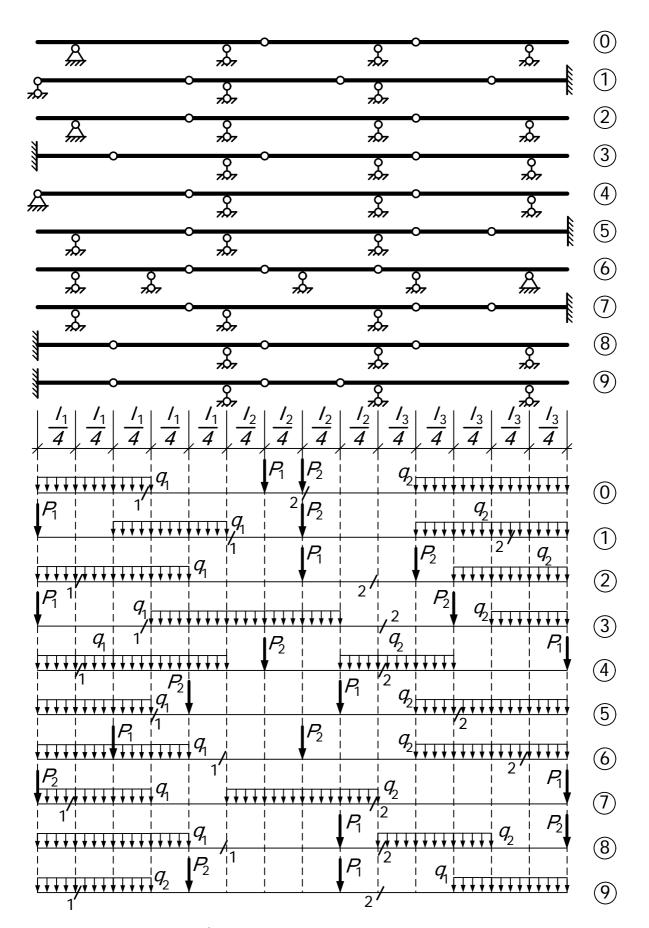
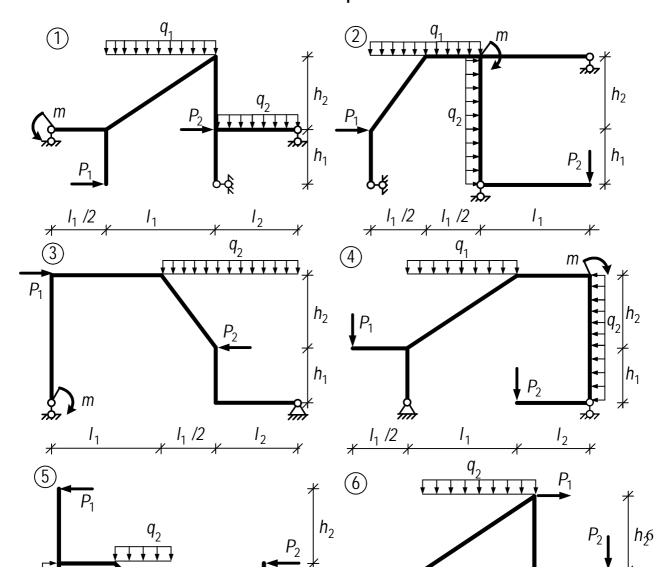
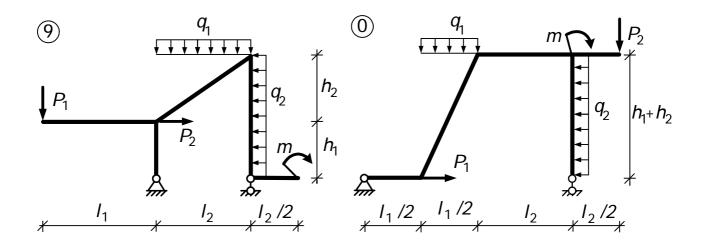




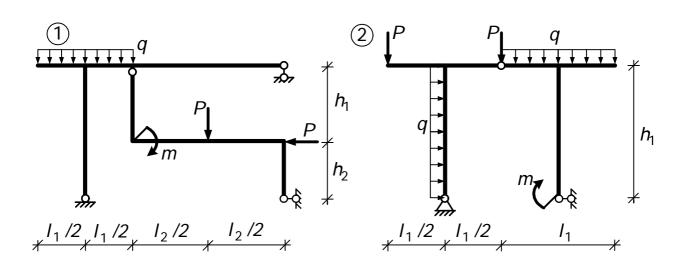
Таблица исходных данных для рам

Первая цифра шифра (номер схема рамы)	h ₁ , М	Р ₁ , кН	Вторая цифра шифра	I ₁ ,	Р ₂ , кН	Третья цифра шифра	h ₂ , М	I ₂ , М	q ₁ , кН/м	Четвёртая цифра шифра	q ₂ , кН/м	т, кНм
1	4,2	7	1	5,2	22	1	5,4	7,8	2,4	1	3,1	8
2	4,4	8	2	5,4	24	2	5,8	7,6	2,6	2	3,5	10
3	4,6	9	3	5,6	18	3	6,0	7,2	2,8	3	2,6	12
4	4,8	10	4	5,8	16	4	4,8	6,8	3,0	4	2,0	14
5	5,0	11	5	6,0	14	5	6,4	6,2	3,2	5	2,8	16
6	5,2	12	6	6,2	12	6	6,6	8,4	3,4	6	2,2	18
7	5,4	13	7	6,4	10	7	3,4	5,8	3,6	7	1,8	20
8	5,6	14	8	6,6	8	8	4,4	5,2	3,8	8	2,5	22
9	5,8	15	9	6,8	15	9	6,2	7,0	4,0	9	2,4	24
0	4,0	6	0	5,0	20	0	5,0	8,0	2,2	0	3,0	6

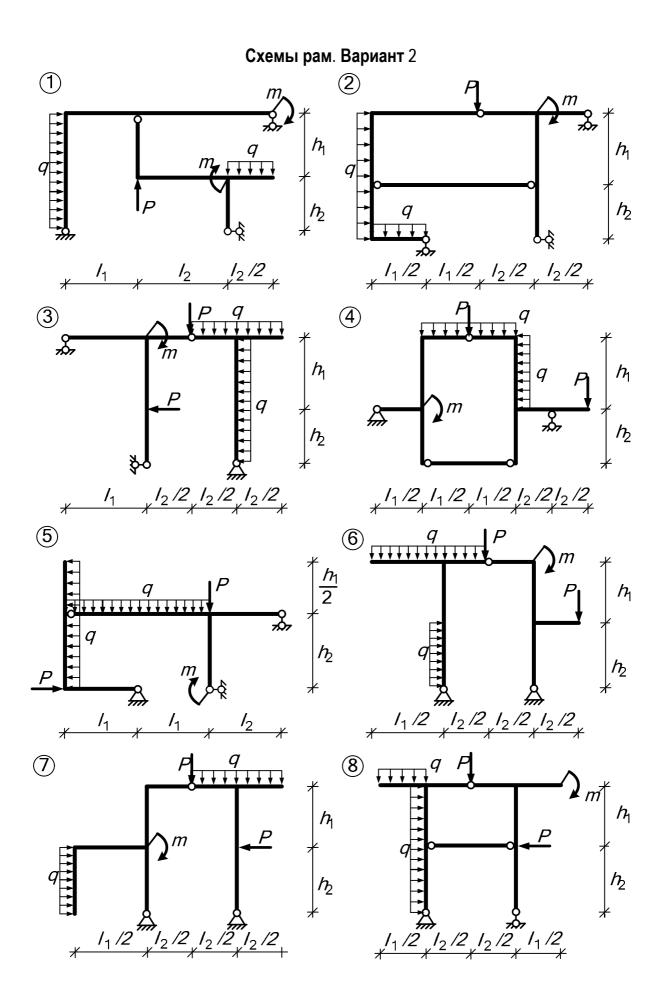
Схемы рам

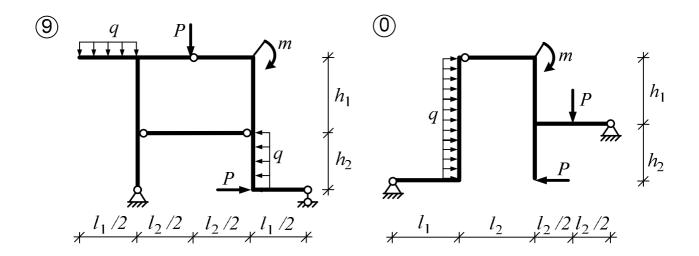
Задание № 2

Расчёт трёхшарнирной рамы и трехшарнирной арки


Для трёхшарнирной рамы требуется:

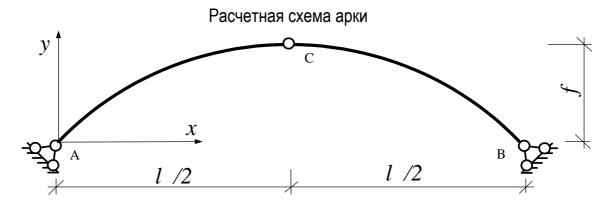
- 1. Определить опорные реакции от заданной нагрузки.
- 2. Построить эпюры изгибающих моментов, поперечных и продольных сил.
- 3. Проверить равновесие узлов и выполнение дифференциальных зависимостей (качественно).


Таблица исходных данных для рамы


Первая цифра шифра (схема рамы)	I ₁ ,	h ₁ ,	Вторая цифра шифра	Р, кН	l ₂ , М	Третья цифра шифра	q, кН/м	Четвёртая цифра шифра	т, кНм	h ₂ , м	Вариант схема рамы
1	4,4	2,8	1	7	5,2	1	2,2	1	22	3	2
2	4,8	3,0	2	8	4,6	2	2,4	2	24	4	1
3	2,8	3,2	3	9	3,8	3	2,6	3	26	5	2
4	3,6	3,4	4	10	4,8	4	2,8	4	18	6	1
5	3,4	3,8	5	11	3,6	5	3,0	5	16	2,5	2
6	3,8	3,6	6	12	4,2	6	3,2	6	14	3,4	1
7	5,0	4,0	7	13	5,4	7	3,4	7	12	2,8	2
8	5,6	4,2	8	14	4,0	8	3,6	8	10	2,2	1
9	3,2	4,4	9	15	5,8	9	3,8	9	15	2,4	2
0	4	2,6	0	6	5,4	0	2,0	0	20	2	1

Схемы рам. Вариант 1

Для трехшарнирной арки требуется:


1. Определить вручную опорные реакции и внутренние усилия M, Q, N в сечении K_1 , показанном на схеме загружения, и в сечении K_2 , положение которого определяется зависимостями:

$$x_{K2} = x_{K1} + 0.45I$$
, если $x_{K1} < I/2$, или $x_{K2} = x_{K1} - 0.45I$, если $x_{K1} > I/2$.

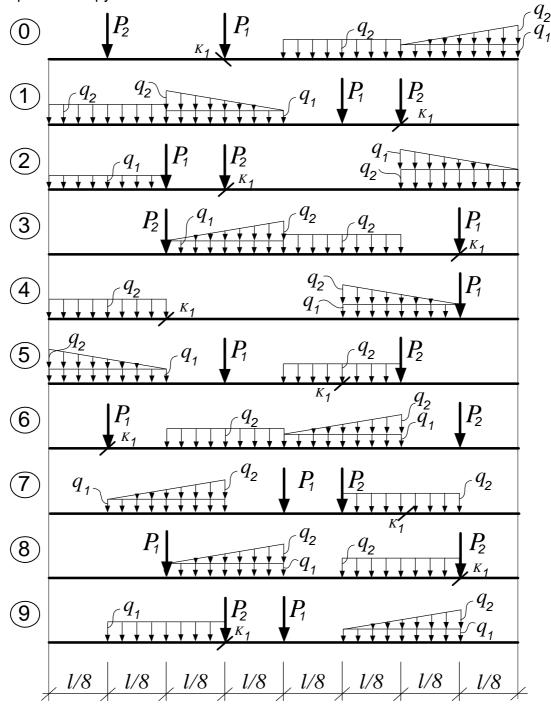

2. Вычислить внутренние усилия во всех сечениях трехшарнирной арки в соответствии с заданным шагом с помощью ЭВМ и построить эпюры М, Q и N в арке. Проверить качественное выполнение известных закономерностей в изменении эпюр усилий, при необходимости откорректировать форму эпюр в промежутках между расчетными сечениями.

Таблица исходных данных для арки

Первая цифра шифра	Очертание оси арки	q ₁ , <u>кН</u> м	Вторая цифра шифра	<i>I</i> , M	q ₂ , <u>кН</u> м	Третья цифра шифра	$\frac{f}{l}$	<i>Р</i> ₁ , кН	Четвертая цифра шифра	Номер загружения	<i>Р</i> ₂ , кН
1	П	2,2	1	28	2,8	1	0,40	12	1	1	34
2	СИН	1,8	2	30	2,4	2	0,28	18	2	2	46
3	Э	2,6	3	38	3,6	3	0,20	20	3	3	32
4	Γ	1,4	4	34	2,0	4	0,15	22	4	4	30
5	0	2,8	5	26	2,6	5	0,35	24	5	5	44
6	П	1,6	6	24	4,0	6	0,25	16	6	6	42
7	СИН	2,0	7	32	3,8	7	0,18	28	7	7	40
8	Э	2,4	8	22	3,4	8	0,32	26	8	8	36
9	Γ	1,2	9	36	3,2	9	0,30	14	9	9	38
0	0	1,0	0	40	3,0	0	0,38	10	0	0	48

Варианты загружений:

Геометрические характеристики трехшарнирных арок определяются следующими зависимостями:

а) для круговых арок (в таблице исходных данных обозначены буквой **О** - окружность):

$$R = \frac{4f^{2} + l^{2}}{8f}; \qquad y = \sqrt{R^{2} - \left(\frac{l}{2} - x\right)^{2}} - R + f;$$

$$\sin j = \frac{l - 2x}{2R}; \qquad \cos j = \frac{y + R - f}{R} = \sqrt{1 - \sin^{2} j}; \qquad (2)$$

б) для параболических арок (в таблице исходных данных обозначены буквой П)

$$y = \frac{4f}{l^2}x(l-x); \qquad tg\mathbf{j} = y' = \frac{4f}{l^2}(l-2x);$$

$$\cos\mathbf{j} = \frac{1}{\sqrt{1+tg^2\mathbf{j}}}; \qquad \sin\mathbf{j} = tg\mathbf{j} \cdot \cos\mathbf{j}; \qquad (3)$$

в) для синусоидальных арок (в таблице исходных данных обозначены буквами СИН):

$$y = f \sin \frac{p x}{l};$$
 $tg \mathbf{j} = y' = \frac{p f}{l} \cos \frac{p x}{l};$ $\sin \mathbf{j}$ u $\cos \mathbf{j} \rightarrow \text{cm. (3)};$ (4)

г) для эллиптических арок (в таблице исходных данных обозначены буквой **3**):

$$y = k\sqrt{a^{2} - \left(\frac{l}{2} - x\right)^{2}} - ka + f; \qquad tgj = y' = \frac{k\left(\frac{l}{2} - x\right)}{\sqrt{a^{2} - \left(\frac{l}{2} - x\right)^{2}}};$$

$$a = \frac{f}{2k} + \frac{kl^{2}}{8f}; \qquad k = \frac{4f}{l}; \qquad \sin j \text{ w } \cos j \rightarrow \text{ cm. (3)}; \qquad (5)$$

д) для гиперболических арок (в таблице исходных данных обозначены буквой Γ):

$$y=f+a-\sqrt{rac{\left(rac{l}{2}-x
ight)^{2}}{k^{2}}}+a^{2}};$$
 $tgm{j}=y'=rac{\left(rac{l}{2}-x
ight)}{\left(rac{l}{2}-x
ight)^{2}};$ где $a=rac{l^{2}}{8k^{2}f}-rac{f}{2};$ $k=rac{l}{p\,f};$ $\sin m{j}$ и $\cos m{j}
ightarrow$ СМ. (3). (6)

где

Замечания к расчету арки:

- 1. Число участков разбивки пролета арки не должно быть менее 12, при этом обязательно дополнительно рассчитываются характерные сечения (слева и справа от точек приложения сосредоточенных сил).
- 2. Расчет арки может выполняться как с помощью ЭВМ по программе «ARKATR» с вычислением вручную только опорных реакций и усилий в двух заданных сечениях, так и полностью вручную.
- 3. Усилия M, Q и N в сечениях арки могут определяться либо на основе <u>общих правил</u> <u>определения внутренних усилий</u>, либо с использованием <u>формул:</u>

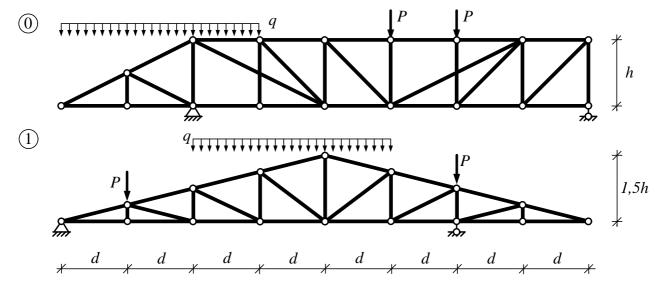
$$M_x = M_x^0 - H \cdot y_x;$$

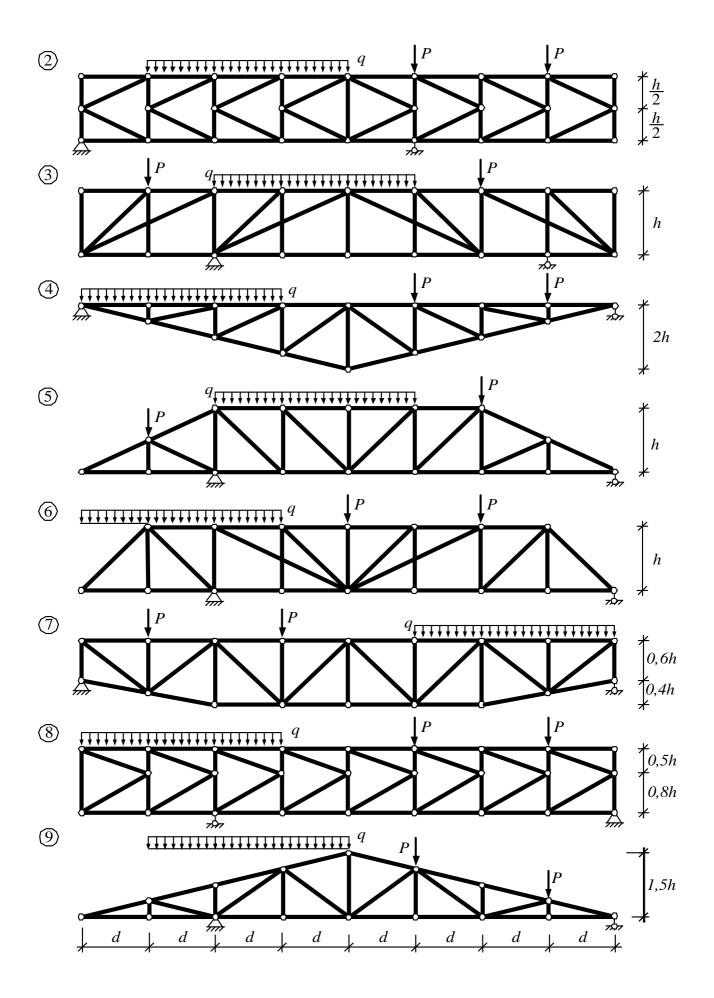
$$Q_x = Q_x^0 \cos j_x - H \sin j_x;$$

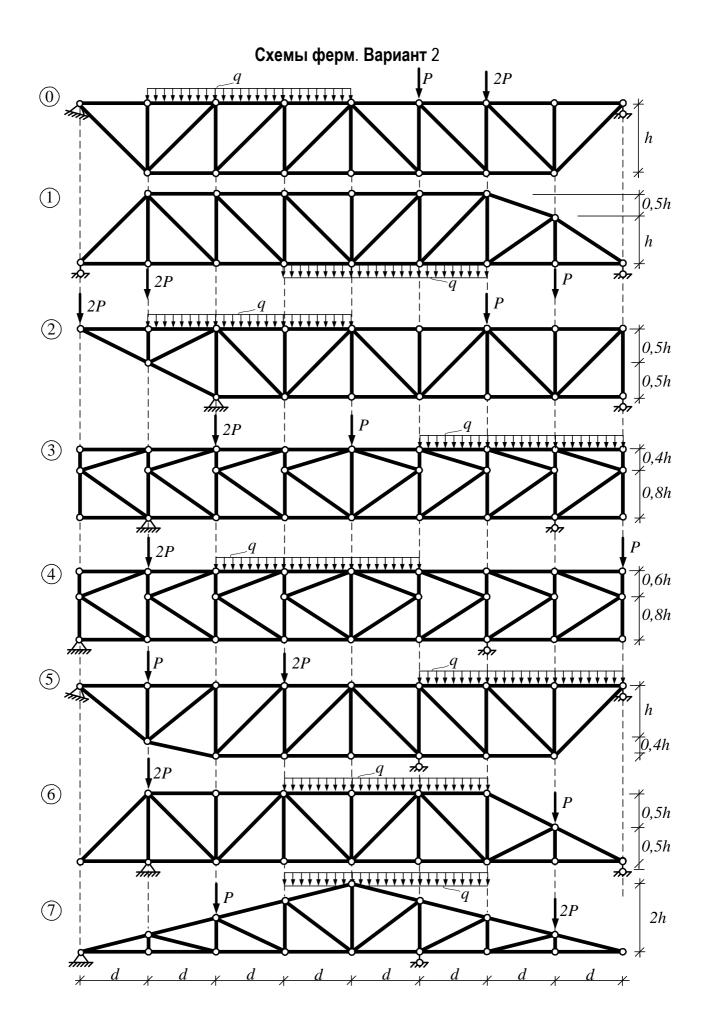
$$N_x = -(Q_x^0 \sin j_x + H \cos j_x).$$

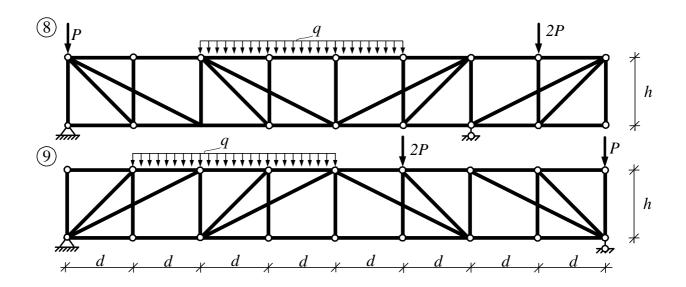
Задание № 3

Расчёт статически определимой фермы

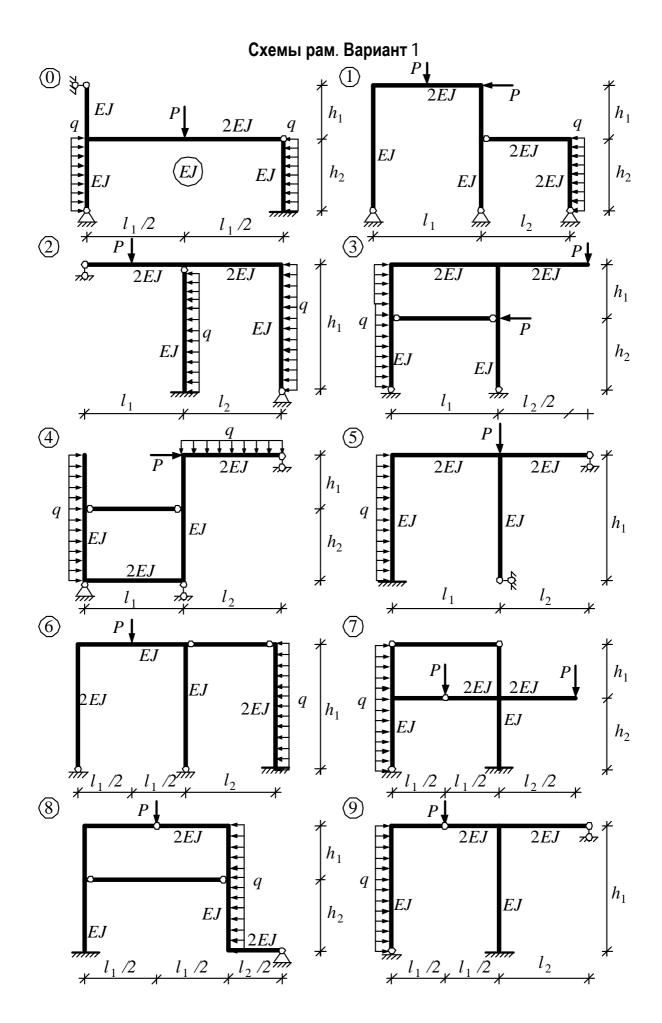

Для фермы требуется:

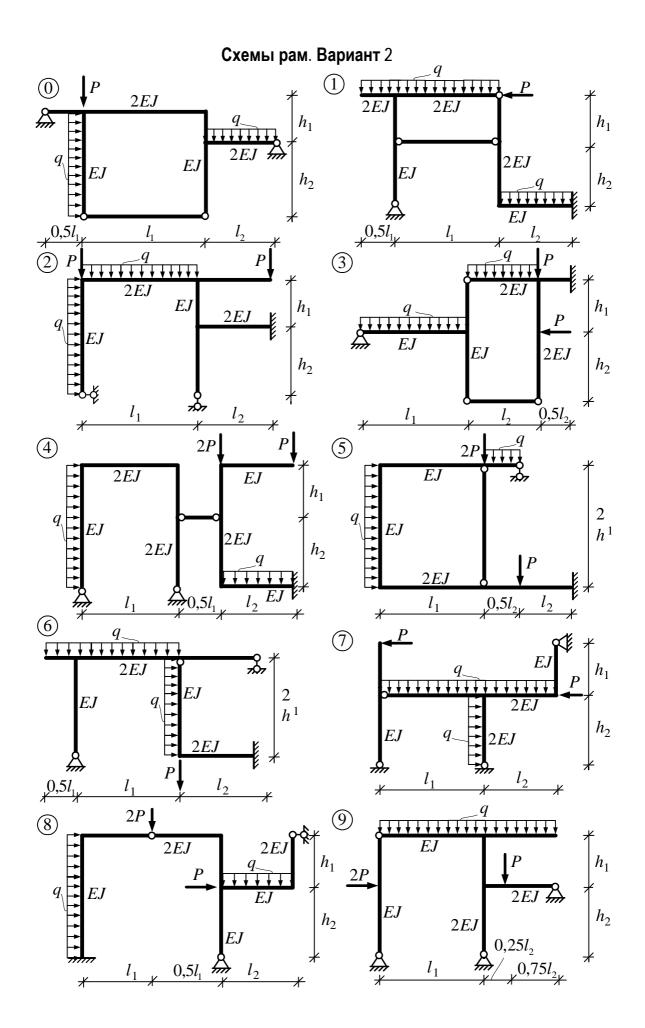

- 1. Определить аналитически усилия в стержнях заданной панели от постоянной нагрузки.
- 2. Построить линии влияния усилий в тех же стержнях.
- 3. Определить усилия в этих же стержнях от действия заданной нагрузки с помощью линий влияния и сравнить их с найденными аналитически в пункте 1.


Таблица исходных данных для плоской фермы


Первая цифра шифра (схема фермы)	Р, кН	Вторая цифра шифра	h, м	Третья цифра шифра	q, кН/м	Четвёртая цифра шифра	<i>d</i> ,	Номер панели (считая слева)	Вариант
1	10	1	3,5	1	2,4	1	3,5	3	2
2	12	2	4,0	2	2,8	2	4,0	4	1
3	14	3	4,5	3	3,2	3	4,2	5	2
4	16	4	3,8	4	3,6	4	3,8	6	1
5	18	5	4,2	5	4,0	5	4,6	5	2
6	20	6	4,6	6	4,2	6	5,0	4	1
7	22	7	5,0	7	4,4	7	3,2	3	2
8	24	8	5,2	8	4,6	8	4,4	2	1
9	26	9	3,6	9	5,0	9	2,4	5	2
0	8	0	3,2	0	2,0	0	3,0	2	1

Схемы ферм. Вариант 1

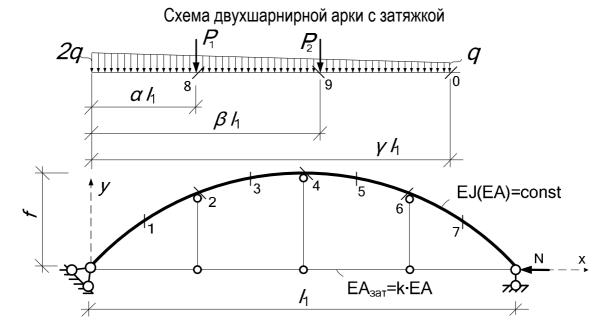

Задание № 4 Расчёт рамы методом сил


Для заданной рамы требуется:

- 1. Рассчитать раму методом сил и построить эпюры изгибающих моментов, поперечных и продольных сил.
- 2. Выполнить проверки правильности построенных эпюр.

Таблица исходных данных:

Первая цифра шифра (схема рамы)	h_1 , M	P, κΗ	Вторая цифра шифра	$l_1,$ \mathcal{M}	q, кН/м	Третья цифра шифра	$h_2,$ \mathcal{M}	Четвёртая цифра шифра	$l_2,$ M	Вариант
1	4,5	12	1	6,2	2,4	1	4,8	1	5,2	2
2	5,0	14	2	6,4	2,6	2	5,4	2	5,4	1
3	3,8	16	3	6,6	2,8	3	5,5	3	5,6	2
4	3,6	18	4	6,8	3,0	4	5,2	4	4,8	1
5	5,2	20	5	7,0	3,2	5	3,6	5	4,6	2
6	5,5	22	6	7,2	3,4	6	3,8	6	4,4	1
7	5,4	24	7	7,4	3,6	7	5,0	7	4,2	2
8	4,8	26	8	7,6	3,8	8	4,5	8	4,0	1
9	3,8	28	9	7,8	4,0	9	4,0	9	6,0	2
0	4,0	10	0	6,0	2,0	0	3,8	0	5,0	1


Задание № 5

Расчёт двухшарнирной арки с затяжкой методом сил

Для двухшарнирной рамы требуется:

- 1. Определить степень статической неопределимости.
- 2. Выбрать основную систему.
- 3. Построить единичные и грузовые эпюры внутренних усилий в основной системе.
- 4. Вычислить коэффициенты канонических уравнений, решить их.
- 5. Построить окончательные эпюры внутренних усилий.
- 6. Выполнить деформационную проверку.

Расчет арки выполнить с помощью ПЭВМ по программе «Arka 2» или вручную.

Геометрические характеристики арок:

а) для круговых арок – в таблице обозначены буквой О (окружность):

$$R = \frac{f}{2} + \frac{l_1^2}{8f}; y = \sqrt{R^2 - \left(\frac{l_1}{2} - x\right)^2} - R + f;$$

$$\sin j = \frac{l_1 - 2x}{2R}; \cos j = \frac{y + R - f}{R};$$

б) для параболических арок – в таблице обозначены буквой П:

$$y = \frac{4f}{l_1^2} x(l_1 - x); \qquad tg\mathbf{j} = y' = \frac{4f}{l_1^2} (l_1 - 2x);$$

$$\cos \mathbf{j} = \frac{1}{\sqrt{1 + tg^2 \mathbf{j}}}; \qquad \sin \mathbf{j} = tg\mathbf{j} \cdot \cos \mathbf{j} ;$$

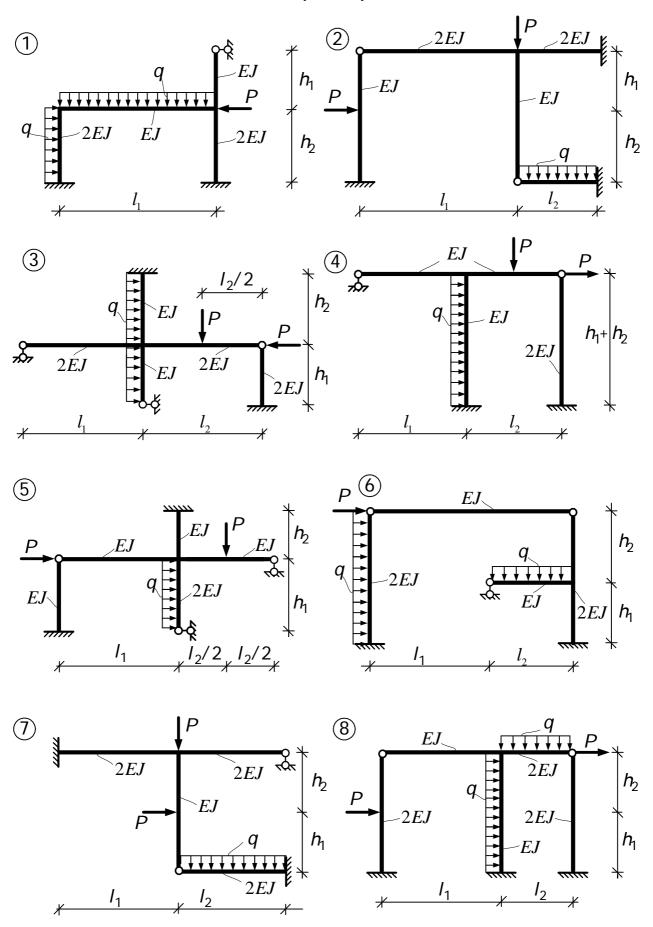
в) для синусоидальных арок – в таблице обозначены буквамой С:

$$y = f \sin \frac{p x}{l_1};$$
 $tgj = y' = \frac{p f}{l_1} \cos \frac{p x}{l_1};$ $\sin j$ и $\cos j \rightarrow$ СМ. ПУНКТ б;

г) для эллипсоидальных арок – в таблице обозначены буквой Э:

$$y=k\sqrt{a^2-\left(rac{l_1}{2}-x
ight)^2}-ka+f\;; \qquad tgm{j}=y'=rac{k\left(rac{l_1}{2}-x
ight)}{\sqrt{a^2-\left(rac{l_1}{2}-x
ight)^2}}\;;$$
 где $a=rac{f}{2k}+rac{kl_1^2}{8\,f}\;; \qquad k=rac{4\,f}{l}\;; \qquad \sinm{j}\;\; \mathrm{M}\;\cosm{j}\;\;
ightarrow\;\mathrm{CM}.$ Пункт б.

Задание № 6 Расчёт рамы методом перемещений


<u>Для заданной рамы требуется:</u>

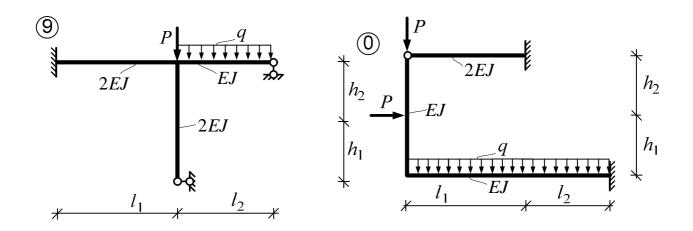
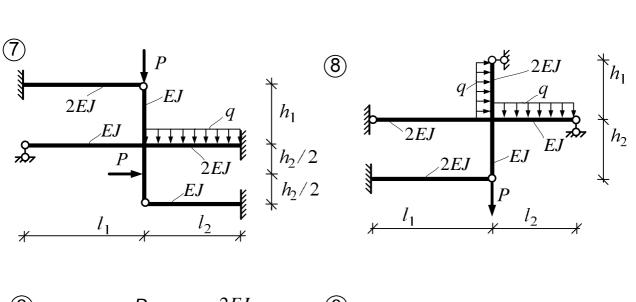
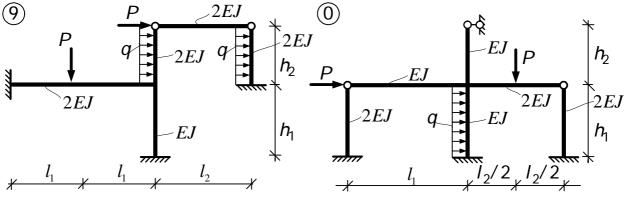

- Рассчитать раму методом перемещений и построить эпюры внутренних усилий в ней.
- 2. Выполнить статические и деформационную проверки.

Таблица исходных данных для рам

Первая цифра шифра (схема рамы)	$h_1, \ \mathcal{M}$	<i>P</i> , κ <i>H</i>	Вторая цифра шифра	l_1 , M	q, кН/м	Третья цифра шифра	$h_2,$	Четвёртая цифра шифра	$l_2,$ M	Вариант
1	3,0	10	1	4,0	3,8	1	6,2	1	3,6	2
2	3,5	12	2	4,2	3,6	2	6,0	2	3,8	1
3	3,8	14	3	4,4	3,4	3	5,4	3	4,0	2
4	3,6	16	4	4,6	3,2	4	5,2	4	4,2	1
5	4,0	13	5	4,8	3,0	5	4,6	5	4,4	2
6	4,2	15	6	5,0	2,8	6	5,5	6	4,6	1
7	4,4	17	7	5,2	2,6	7	5,0	7	4,8	2
8	5,0	18	8	5,4	2,4	8	4,8	8	5,0	1
9	5,6	19	9	5,6	2,2	9	4,4	9	5,2	2
0	6,2	20	0	5,8	2,0	0	4,2	0	5,4	1


Схемы рам. Вариант 1



Схемы рам. Вариант 2

Литература,

рекомендуемая к использованию при изучении материала и выполнении расчётнопроектировочных работ.

- 1. Строительная механика / Под ред. А.В. Даркова. М.: Высшая школа, 1976. 600с.
- 2. Довнар Е.П., Коршун Л.И. Строительная механика. Мн.: Вышэйшая школа, 1989. 310с.
- 3. Руководство к практическим занятиям по курсу строительной механики. Статика стержневых систем / Под ред. Г.К. Клейна. М.: Высшая школа, 1980. 384с.
- 4. Построение эпюр внутренних усилий в статически определимых рамностержневых системах: Методические указания по дисциплине «Строительная механика» для студентов строительных специальностей / В.И. Игнатюк; БГТУ. – Брест, 2002. – 36с.
- 5. Метод сил в расчётах статически неопределимых рам. Методические указания по дисциплине «Строительная механика» для студентов строительных специальностей / В.И. Игнатюк; БГТУ. Брест, 2003.60с.

Учебное издание

Составитель: Севостьянова Инна Ивановна

Задания к расчетно-проектировочным работам по дисциплине «Строительная механика»

для студентов специальности 1-70 01 01 «Производство строительных изделий и конструкций»

Ответственный за выпуск: Севостьянова И.И.

Редактор: Строкач Т.В.

Технический редактор Никитчик А.Д.

Подписано к печати 00.00.2007 г. Формат 60 с84/16. Бумага Снегурочка. Гарнитура Times New Roman. Усл. печ. л. 1,86. Уч.-изд. л. 2,0. Тираж экз. Заказ № . Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет». 224017, Брест, ул. Московская, 267.