МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Брестский государственный технический университет»

Кафедра геотехники и транспортных коммуникаций

ЗАДАНИЯ

к курсовому проекту по дисциплине «Механика грунтов, основания и фундаменты»

для студентов специальности 1-70 02 01 «Промышленное и гражданское строительство», 1-74 04 01 «Сельское строительство и обустройство территорий»

УДК 624.131

В заданиях приведены необходимые сведения и данные по конструкции проектируемых зданий, инженерно-геологическим условиям площадок строительства, таблицы из справочно-нормативной литературы.

Предложенные данные могут быть использованы в курсовом и дипломном проектировании.

Составители: В.Н. Дедок, доцент Г.П. Дёмина, ст. преп. А.Н. Невейков, ассистент Д.С. Козловский, ассистент

Рецензент: В.Н. Деркач, Заместитель директора филиала «Институт БелНИИС»-Научно-технический центр, г. Бреста, кандидат технических наук

[©] Учреждение образования «Брестский государственный технический университет», 2013

ОБЩИЕ СВЕДЕНИЯ

Настоящие задания к курсовому проекту по дисциплине «Механика грунтов, основания и фундаменты» предназначены для студентов специальности 1-70 02 01 «Промышленное и гражданское строительство» и должны быть использованы совместно с методическими указаниями по проектированию фундаментов, разработанными кафедрой геотехники и транспортных коммуникаций Брестского государственного технического университета.

В заданиях приведено десять схем различных типов промышленных и гражданских зданий. Номера расчетных сечений фундаментов указанных на плане здания студент принимает в соответствии с заданием. Грунтовые условия площадки строительства представлены геологическими колонками дополненными графиками динамического и статического зондирования грунтов, полученных по результатам полевых испытаний.

ДАННЫЕ О СТРОИТЕЛЬНЫХ ПЛОЩАДКАХ

В приведенных геологических колонках, выполненных по результатам бурения и визуальной оценки видов грунтов, указывается: в графе 1 - геологический возраст грунта; в графе 2 - абсолютная отметка подошвы слоя; в графе 3 - глубина подошвы слоя; в графе 4 - мощность слоя; в графе 5 - створ скважины; в графе 6 - условные обозначения грунта; в графе 7 — литологическое описание грунта. С геологическими колонками совмещены графики динамического (площадки 1...5) и статического (площадки 6...10) зондирования. Номер строительной площадки принимается в соответствии с вариантом задания.

Результаты определения физических характеристик грунтов, выполненных в лабораторных условиях, по образцам отобранных в процессе бурения, приведены в таблице А.1 Приложения А.

ДАННЫЕ О КОНСТРУКЦИИ ЗДАНИЙ

Схема 1. Промышленное здание. Здание каркасного типа с однопролетным поперечником, величина пролета — 24,0 м. стропильные фермы опираются на железобетонные стойки каркаса сечением 60х40 см, которые защемлены в фундаменте. К основному корпусу примыкает вспомогательный, запроектированный по конструктивной схеме с неполным каркасом. Наружные стены выполнены из обыкновенного керамического кирпича толщиной 51 см.

Схема 2. Фабричный корпус. Здание каркасного типа. Основной несущей конструкцией является однопролетная рама с шарнирно закрепленным ригелем, пролетом 18,0 м. Железобетонные стойки каркаса сечением 60х40 см в нижней части защемлены в фундаменте. К основному корпусу примыкает вспомогательный, выполненный по бескаркасной схеме. Несущие продольные внутренние и наружные стены его выполнены из обыкновенного керамического кирпича толщиной 38 и 51 см соответственно.

Схема 3. Крупноблочная 5 этажная школа на 880 учащихся. Здание школы запроектировано с несущими внутренними и наружными стенами. Наружные стены монтируются из бетонных блоков толщиной 55 см и удельным весом 24,0 кН/м³. Перекрытия опираются на наружные и внутренние стены, а средние части здания — на ригели сечением 60х16см, опирающиеся на колонны сечением 40х30см. Кровля плоская с внутренним водостоком. Чердак полупроходной, высотой 1,6м.

Схема 4. *Химический корпус.* Здание запроектировано по каркасной схеме из сборных железобетонных конструкций. Колонны каркаса в продольном направлении имеют шаг 6м, сечение 40×40см, а в поперечном – 6м, сечение - 40х40см. Кровля плоская совмещенная с покрытием, перекрытия из железобетонных многопустотных плит.

Схема 5. Сборочный цех. Здание каркасного типа. Основной несущей конструкцией здания является однопролетная рама с шарнирно закрепленным ригелем, пролетом 18 м. Железобетонные стойки каркаса размером 60х40 см в нижней части защемлены в фундаменте. К основному зданию примыкает вспомогательный корпус, выполненный по конструктивной схеме с неполным каркасом. Несущие наружные стены его выполнены из обыкновенного керамического кирпича толщиной 51 см, удельный вес кладки 18 кН/м³. Продольный каркас выполнен из ригелей размером 30х50 см, которые опираются на колонны сечением 40х40 см.

Схема 6. Административное здание. Здание каркасного типа. Основой здания является каркас в осях A÷B, железобетонные стойки сечением 60,0×40,0 см, в нижней части защемлены в фундаменте. К основному зданию примыкает вспомогательный корпус, выполненный по бескаркасной схеме. Наружные стены вспомогательного корпуса выполнены из керамического кирпича, толщиной 510 мм.

Схема 7. Сельский клуб. В осях 1÷3 здание выполнено по схеме с неполным каркасом, в середине по оси 2 установлены две колонны сечением 40,0×40,0 см. В осях 3÷4 здание бескаркасное. Наружные стены здания из эффективного керамического кирпича, толщина стен – 510 мм.

Схема 8. Вычислительный центр железной дороги. Здание в осях А÷Б решено в каркасном исполнении, в осях Б÷Г здание бескаркасное. Стойки каркаса — железобетонные колонны поперечным сечением 60,0×40,0 см. Перекрытие здания из сборных многопустотных плит. Наружные и внутренние стены выполнены из керамического кирпича, толщина внутренних стен 380 мм, наружных 510 мм.

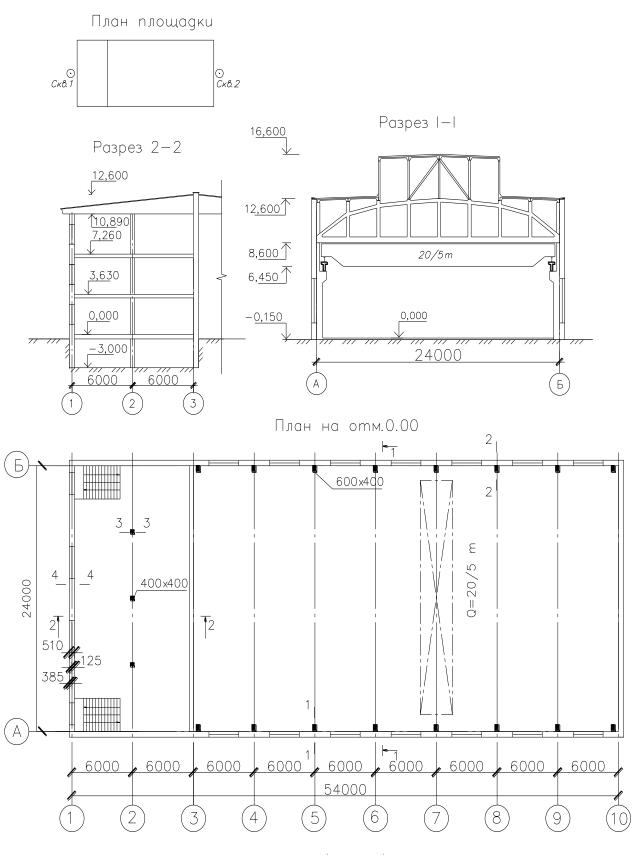
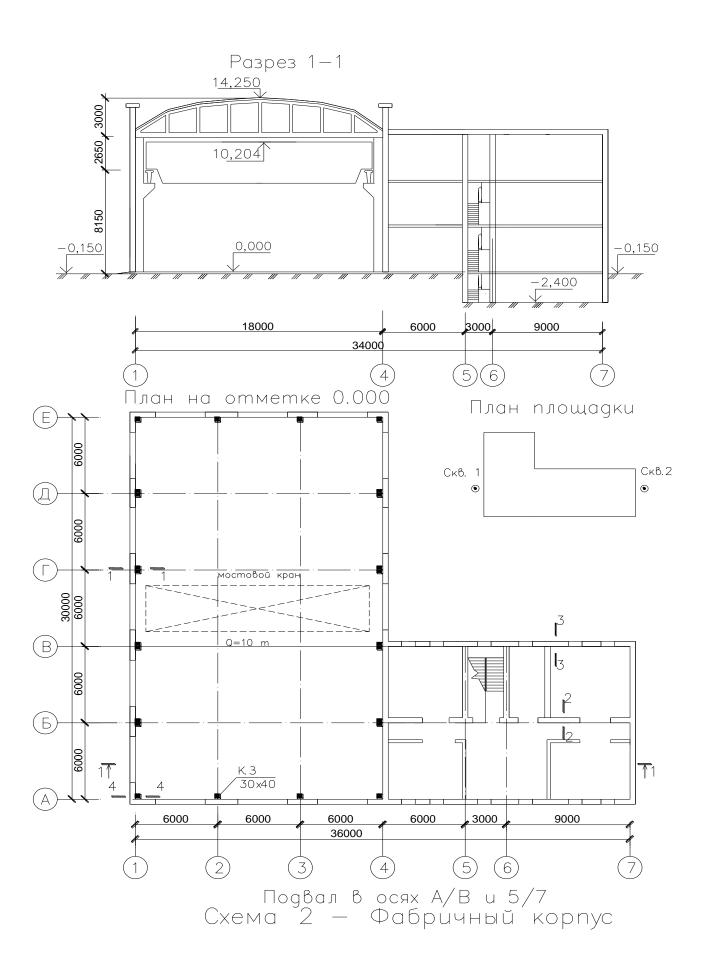
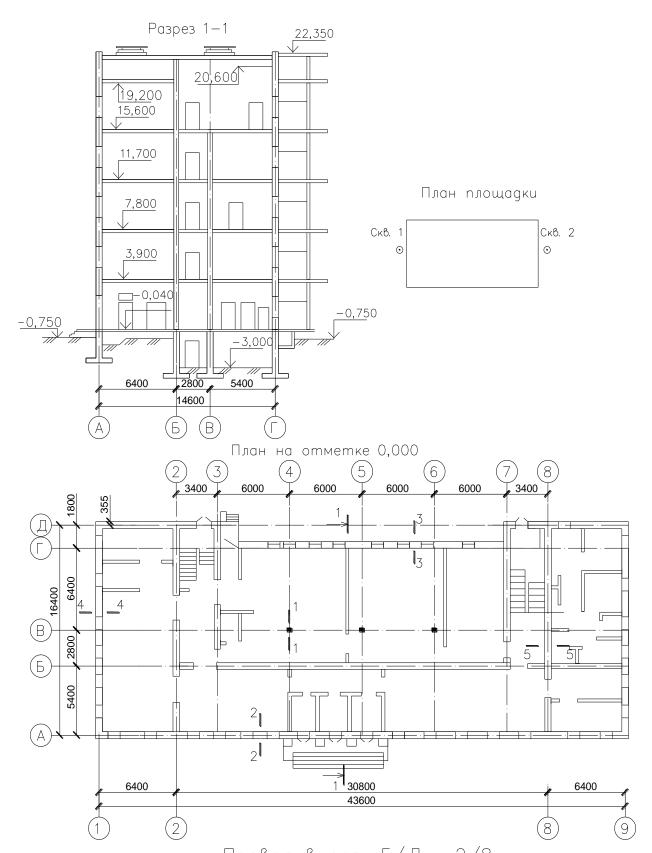
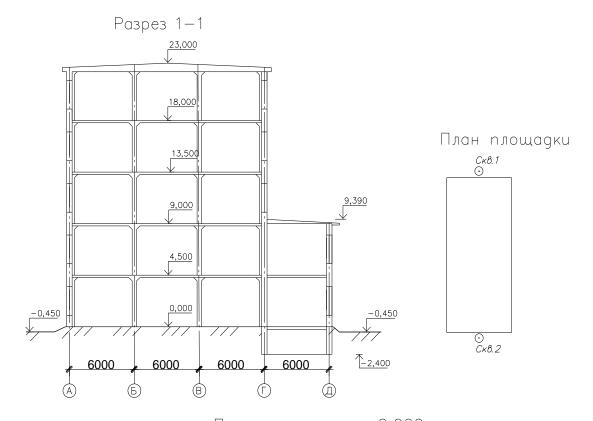
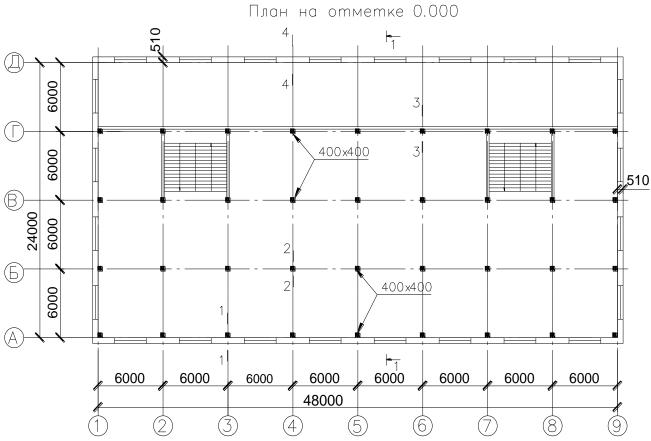

Схема 9. Учебный корпус. Здание выполнено по схеме с неполным каркасом. В середине здания на оси Б установлены железобетонные колонны сечением 40,0×40,0 см. На колонны опираются железобетонные ригеля сечением 40,0×50,0 см, перекрытие из сборных многопустотных плит. Наружные стены из эффективного керамического кирпича с облицовкой силикатным, толшина стен 510 мм.

Схема 10. Спортивный комплекс. Здание выполнено по схеме с неполным каркасом в осях 2-7 и по бескаркасной схеме в осях 1-2 и 7-8. В середине здания на осях В и Е установлены железобетонные колонны сечением $50,0 \times 50,0$ см. Наружные стены здания из эффективного керамического кирпича, толщина стен — 510 мм.

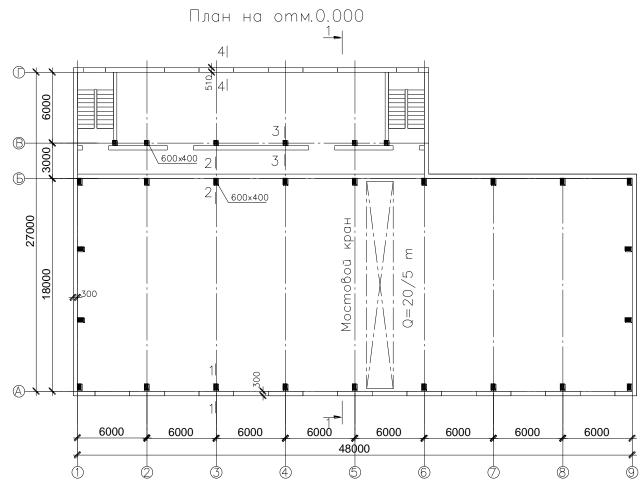

Расчетные сечения и величины действующих в них нагрузок приведены в таблице A.2 приложения A и принимаются в соответствии с вариантом задания.

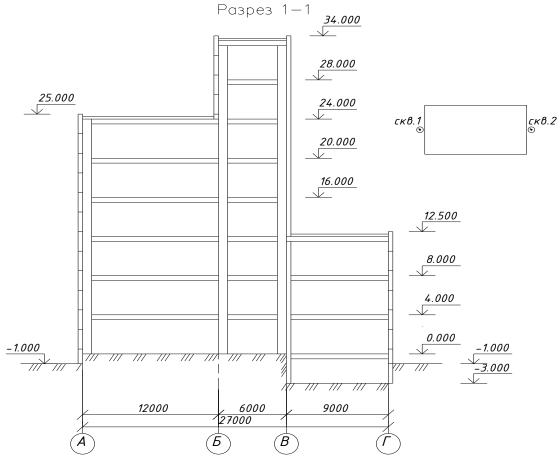

При необходимости сбора нагрузок конструктивное решение, кровли, перекрытий, полов, перегородок и стен студент может их принять в соответствии с типовыми решениями с обязательным обоснованием и указанием их в проекте.

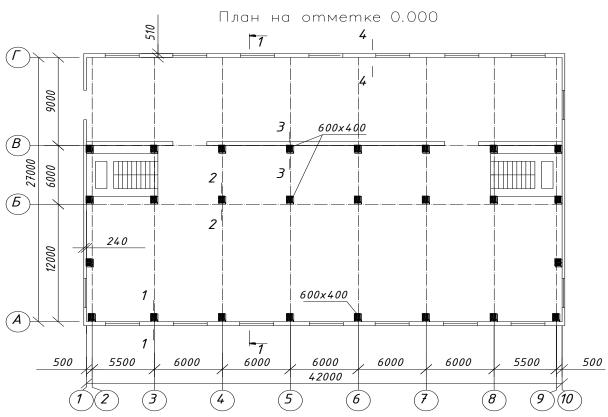


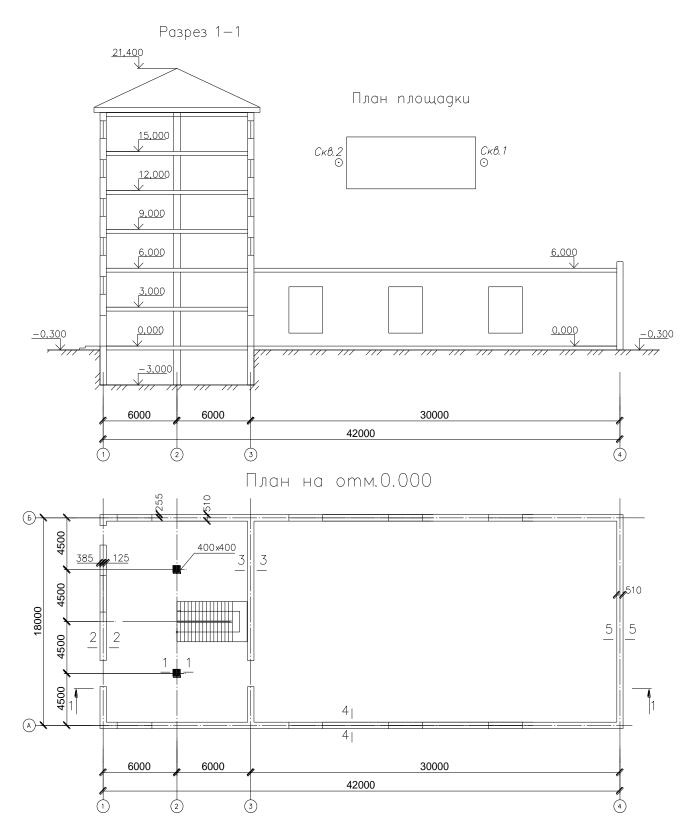

Подвал в осях А/Б и 1/3 Схема 1 — Промышленное здание




Подвал в осях Б/Д и 2/8 Схема 3— Крупноблочная 5 этажная школа на 880 учащихся




Подвал в осях Г/Д и 1/9 Схема 4— Химический корпус



Подвал в осях B/Γ и 1/6 Схема 5 — Сборочный цех

Подвал в осях В/Г и 1/10 Схема 6— Административное здание

Подвал в осях А/Б и 1/3 Схема 7— Сельский клуб

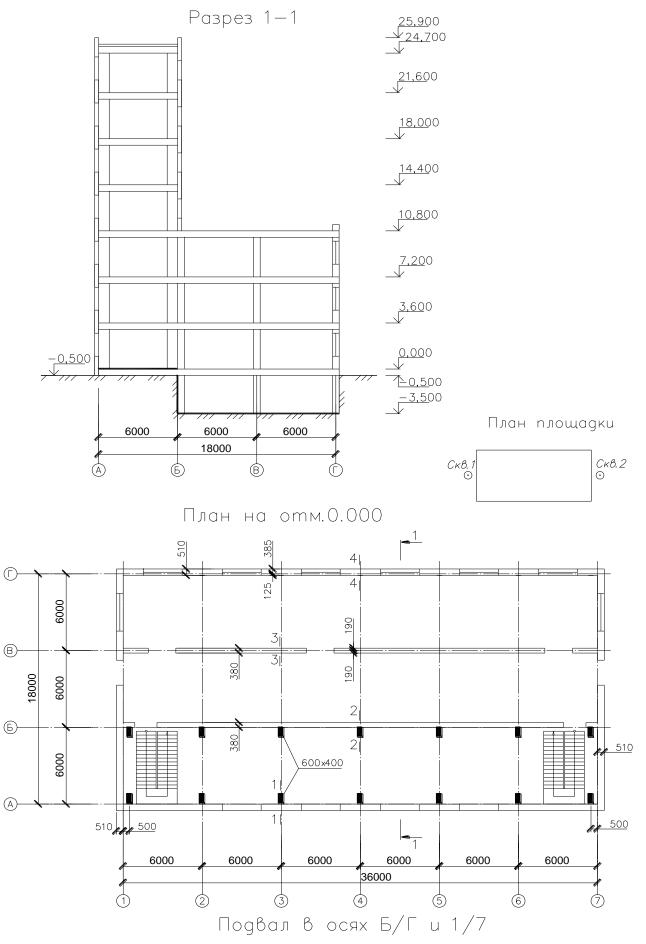
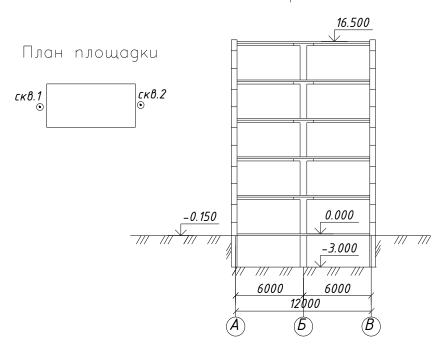
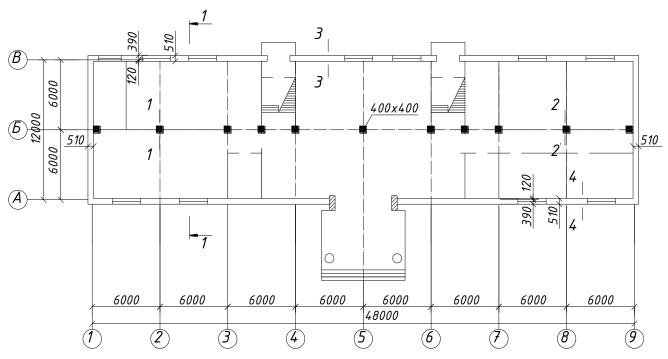




Схема 8 — Вычислительный центр железной дороги

Разрез 1-1

План на отметке 0.000

Подвал в осях A/B и 1/5 Схема 9 — Учебный корпус

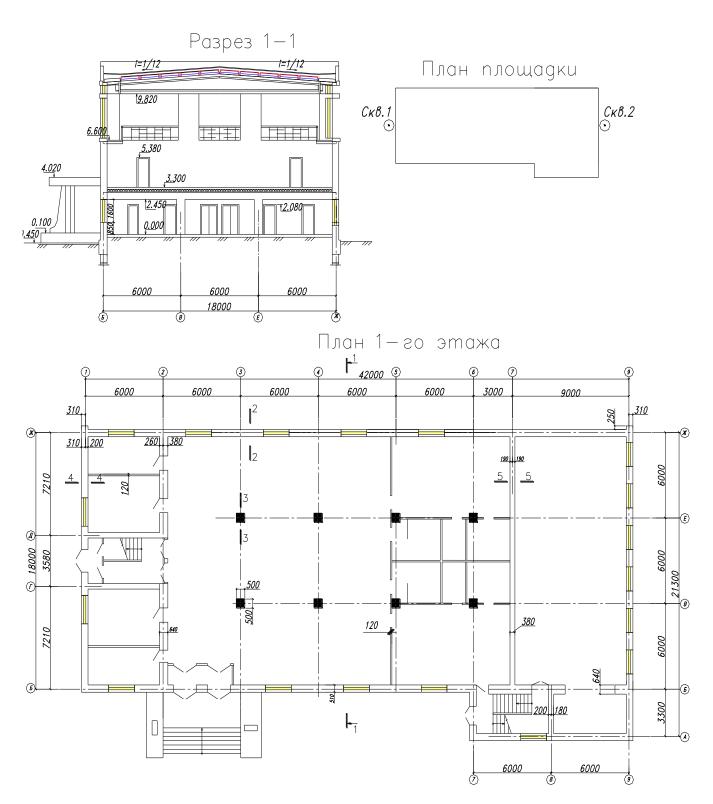


Схема 10 — Спортивный комплекс

СКВАЖИНА 1

СКВАЖИНА 2

страт. индекс	мощность Слоя, м	гиявина подошвы сиря, и	АБСОЛЮТНАЯ ОТМЕТКА СЛОЯ, М	СКВАЖИНА 140,0 √	90/ЮВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА	
	0,2	0,2	139,8			ПОЧВЕННЫЯ СИОЯ	Pd, МПа 2,0 4,0 6,0 8,0
aQ4	4,0					ПЕСОК	5
		4,2	135,8				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
aQ3	3,0					САСЛИНОК	<u> </u>
		7,2	132,8	132,1			1
aQ3	5,0			<u> </u>		ПЕСОК	
		12,2	127,8				
LgQ2	2,0					ГЛИНА	5
		14,2	125,8				4

страт. индекс	мощность слоя, N	ГЛУБИНА ПОДОШВЫ СЛОЯ, М	АБСОИ О ТНАЯ ОТИЕТКА СИОЯ, N	скважина 140,2 √	УСЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,4	0,4	139,8			ПОЧВЕННЫЯ СЛОЯ
aQ4	3,8					ПЕСОК
		4,2	136,0			
aQ3	3,0					САСЛИНОК
		7,2	133,0	132,3		
aQ3	4,5					ПЕСОК
		11,7	128,5			
LgQ2	2,5					ГЛИНА
		14,2	126,0			

СКВАЖИНА 1

СКВАЖИНА 2

страт. индекс	иощность слоя, N	ГЛУБИНА ПОДОШВЫ СЛОЯ, М	АВСОЛЮТНАЯ ОТИЕТКА СЛОЯ, М	ckbaxuha 150,5 √	9C/IDBHOE OGOSHAVEHJÆ	НАИМЕНОВАНИ ГРУНТА	Ξ			D-1 MD-
	0,5	0,5	150,0			почвенныя Слоя	2,0	4,0	6,0	Pd, МПа 8,0
aQ4	3,5					ПЕСОК	\ \			
		4,0	146,5				<u> </u>		+	+
aQ3	1,5	5,5	145,0	144,0		СЯПЕСР				
aQ3	3,0	8,5	142,0			ПЕСОК			3 5	
lgQ3	5,0	13,5	137,0			САСЛИНОК				

страт. индека	мощность Слоя, м	ГЛИВИНА ПОДОШВЫ СЛОЯ, М	ABCOJIOTHAЯ OTMETKA CJOЯ, N	CKBAXUHA 150,0_ √	УС/ЮВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,5	0,5	149,5			ПОЧВЕННЫЯ СЛОЯ
aQ4	3,5					ПЕСОК
		4,0	146,0			
aQ3	2,0	6,0	144,0	143,5		СЯПЕСР
aQ3	2,5	8,5	141,5			ПЕСОК
lgQ3	4,5					СЯСЛИНОК
		13,0	137,0			

страт. ИНДСКО		ГИЧВИНА ПОДОШВЬ СИОЯ, N	ABCD/NOTHAS OTMETKA C/NOS, N	CKBAXWHA 130,5 √	ЯСЛОВНОЕ ОВОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРИНТА	2,0	4,0	6,0	Pd, M 8,0	(Πa
tHQ4	1,0	1,0	129,5			НАСЫПНОЙ С/10Й		<u> </u>			
aQ4	3,5			127,0		СЯПЕСР	<u>_</u>				
		4,5	126,0		•///		<u>}</u>				
aQ3	4,0					ПЕСОК					_
		8,5	122,0						<u>}</u>		1
a Q3	3,0					САСЛИНОК		<u> </u>	_		
		11,5	119,0					7	+		+
lgQ2	3,5					СЭГЛИНОК]			
yyar	-,-	15,0	115,5				'	ί			

страт. индекс	мощность сиоя, м	ГИУВИНА ПОДОШВЫ СИОЯ, N	АВСОЛЮТНАЯ ОТМЕТКА СЛОЯ, И	0KBAЖИНА 130,0_ √	90ЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
tnQ4	1,0	1,0	129,0			НАСЫПНОЯ С <i>Л</i> ОЙ
aQ4	2,5			127,5		СЯПЕСР
		3,5	126,5		.///	
aQ3	3,5					ПЕСОК
		7,0	123,0			
aQ3	2,5	9,5	120,5			САСУИНОК
lgQ2	4,5	14.0	116,0			СЯСУИНОК
		14,0	110,0		<u> </u>	

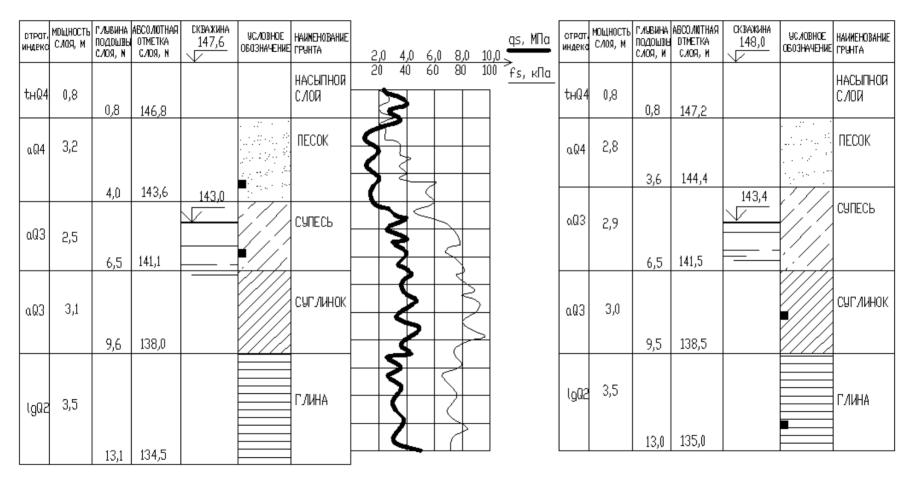
СКВАЖИНА 1

14,0

131,0

отрат, МОЩНОСТЬ ГЛУВИНА АБСОЛЮТНАЯ ИНДЕКО СЛОЯ, М ПОДОШВЫ ОТМЕТКА СЛОЯ, И СЛОЯ, М СКВАЖИНА УСЛОВНОЕ НАИМЕНОВАНИЕ ОБОЗНАЧЕНИЕ ГРУНТА 144,6 Pd, M∏a 0,2 2,0 4,0 6,0 8,0 144,4 3,4 Ісэглинок **Н**Е 142,0 3,6 141,0 сяцесь aQ3 6,5 | 138,5 сяглинок tgQ3 3,0 9,5 135,5 4,5 песок

СКВАЖИНА 2


страт. индека		ГЛУВИНА ПОДОШВЫ СЛОЯ, N	ABCO <i>J</i> IOTHAЯ OTMETKA C <i>J</i> IOЯ, N	CKBAXUHA 0,745,0 √√	9СЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,5	0,5	144,5			Растительныя слоя
aQ4	3,5			142,0		сэглинок
		4,0	141,0	<u> </u>		
aQ3	2,0					сяцесь
		6,0	139,0			
(ე03	3,0	9,0	136,0			СЯГЛИНОК
aQ3	4,5		-		■	песак
		13,5	131,5			

СКВАЖИНА 1

СКВАЖИНА 154,5 NОЩНОСТЬ ГЛУБИНА АБСОЛЮТНА СЛОЯ, М ПОДОШЯЬЮ ОТМЕТКА СЛОЯ, М СЛОЯ, М АБСОЛЮТНАЯ УСЛОВНОЕ НАИМЕНОВАНИЕ ОБОЗНАЧЕНИЕ ГРУНТА индеко СЛОЯ, М Pd, M∏a пачвенныя 0,3 154,2 0,3 2,0 4,0 6,0 8,0 CAOR 3,7 aQ4 ПЕСОК 151,3 150,5 4,0 суплинок 3,0 aQ3 7,0 | 147,5 ПЕСОК aQ3 5,0 12,0 142,5 aQ2 2,0 суплинок 14,0 | 140,5

СКВАЖИНА 2

страт. индекс	МОЩНОСТЬ СИВЯ, М	глувина Подошвы слоя, и	ABCO/INTHAЯ OTNETKA C/IOЯ, M	скважина 154,0 √	УСЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,1	0,1	153,9			ПОЧВЕННЫЯ Сиря
aQ4	3,9			151,0		ПЕСОК
		4,0	150,0			
aQ3	3,0					САСЛИНОК
		7,0	147,0			
aQ3	4,0					ПЕСОК
		11,0	143,0			
aQ2	2,0					саслинок
		13,0	141,0			

строт. индекс	СЛОЯ, М	Г <i>Л</i> УБИНА ПОДОШВЫ С <i>Л</i> ОЯ, М	ABCOJNITHAG OTMETKA CJOS, N	CKBAXWHA 134,6 √∕	УСЛОВНОЕ ОВОЗНАЧЕНИЕ		2,0 4,0 6,0 8,0 10,0 20 40 60 80 100 fs, кПа
	2,0	0,2	134,4			Растительныя слоя	20 40 60 80 100 fs, k∏a
aQ4	3,9			131,7		сяпесь	3
		4,1	130,5		///		
aQ3	3,5					СЯГЛИНОК	3
		7,6	127,0				
 tgQ3	2,0					глина	
1940		9,6	125,0				
aQ3	4,0					песок	
		13,6	121,0				

страт, индеко	мощность сиоя, м	Г <i>Л</i> УВИНА ПОДОШВЫ С <i>Л</i> ОЯ, М	ABCOJIOTHAЯ OTNETKA CJOS, N	CKBAXWHA 135,0 √	УСЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,5	0,5	134,5			Растительныя слоя
	3,5					сяцесь
aQ4	لرد			132,0		
				$\sqrt{}$		
		4,0	131,0		////	
aQ3	3,0		100.0			СЭГЛИНОК
			128,0			
		7,0				
						глина
	2,5					TAMING
lgQ3		9,5	125,5			
						песок
aQ3	4,5					
		14,0	121,0			

страт. индекс	мощность сиоя, и	ГЛЯВИНА ПОДОШВЫ СЛОЯ, И	ABCOJIOTHAЯ OTMETKA CJOЯ, M	CK∄AЖИНА 167,4 √	90/10ВНОЕ 0ВОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА	42) IIII
	0,2	0,2	167,2			Растительный слой	2,0 4,0 6,0 8,0 10,0 20 40 60 80 100 fs, kNa
aQ4	3,7			164,0	- -	сяцесь	\
		3,9	163,5	<u> </u>			
aQ3	4,0					сэглинок	3
		7,9	159,5				
lgQ3	2,0					глина	
		9,9	157,5				
lgQ2	3,0	12,9	154,5			глина	

отрат. индекс	иощность слоя, м	ГЛУВИНА ПОДОШВЫ СЛОЯ, М	ABCD <i>J</i> IOTHAЯ DTMETKA C <i>J</i> IOЯ, M	СКВАЖИНА 167,0 √	9СЛОВНОЕ 0БОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,5	0,5	166,5			Растительный слой
aQ4	3,5			164,0		сяцесь
		4,0	163,0	\downarrow		
aQ3	4,0					сэглинок
		8,0	159,0			
lgQ3	2,5	10,5	156,5			глина
lgQ2	2,5	20)0				глина
		13,0	154,0			

строт. индекс		ГЛУВИНА ПОДОШВЫ СЛОЯ, N	АВСОЛОТНАЯ ОТИЕТКА СЛОЯ, М	CKBAXUHA 159,5 √	ысловное оврзначение	НАИ ИЕ НОВАНИЕ ГРИНТА	2,0 4,0 6,0 8,0 10,0 20 40 60 80 100 fs, kNa
	0,2	0,2	159,3			DOABEHHAN Cyon	20 40 60 80 100 fs, k∏a
aQ4	3,3				•	песок	2
		3,5	156,0	155,4			
aQ3	2,0			<u> </u>		песок	3
		5,5	154,0		- 0.00		
aQ3	2,5	8,0	151,5			песок	\
aQ2	5,0					сяглинок	3
		13,0	146,5				

страт. индекс	мощность сиюя, м	ГЛ9ВИНА ПОДОШВЫ СЛОЯ, М	ABCO/NOTHAG OTMETKA C/JOS, N	CKBAXWHA 160,0 √	ВСЛОВНОЕ ОБОЗНАЧЕНИЕ	наи и енование Грунта
	0,4	0,4	159,6			DOABEHHAN Cyon
aQ4	3,6					песок
		4,0	156,0	155,4		
aQ3	2,5			\perp		песок
		6,5	153,5			
aQ3						песок
เหม	2,5	9,0	151,0			
aQ2	4,0					сяглинок
		13,0	147,0			

CKBAXUHA 1 CKBAXUHA 2

страт. индекс	ИОЩНОСТЬ СЛОЯ, М	ГЛУВИНА ПОДОШВЫ СЛОЯ, М	АВСОЛЮТНАЯ ОТМЕТКА СЛОЯ, М	CKBAXUHA 209,0 √	АСМОВНОЕ ОВОЗНАЧЕНИЕ	l	2,0 4,0 6,0 8,0 10,0 20 40 60 80 100 fs, kNa
	0,1	0,1	208,9			Растит. слои	20 40 60 80 100 <u>f</u> s, кПа
aQ4	2,9					сэглинок	8
		3,0	206,0				
aQ3	2,0			205,5		песок	
uas		5,0	204,0				
aQ3	3,5						3
		8,5	200,5			песок	
a.Q3	4,5	-				песок	
		13,0	196,0			•	

отрат. Индекс	МОЩНОСТЬ СИОЯ, М	гиувина подошвы сиоя, м	АВСОЛЮТНАЯ ОТМЕТКА СЛОЯ, М	СКВАЖИНА 210,0	УСЛОВНОЕ ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ ГРУНТА
	0,5	0,5	209,5	*		Растит. слоя
aQ4	3,0					СЯГИИНОК
		3,5	206,5			
aQ3	2,0			205,5		песок
~		5,0	204,5		2	
aQ3	3,0					
		8,0	201,5		■ [3] 4.	песок
aQ3	5,0					песок
		13,0	196,5			

Таблица А.1 - Результаты определения физических свойств грунтов

K.	ра,			Г	рануломе	трический	і состав, %	6	ф -		_	- -	% %	ط
строительная площадка	номер слоя	скважина	глубина отбора, м	> 2	2 - 0,5	0,5 - 0,25	0,25 - 0,1	< 0,1	плотность ча- стиц ps, r/cм³	плотность р, г/см³	влажность W, %	граница текуче- сти W _L , %	граница раска- тывания W _P , %	коэфф. филь- трации, kf, см/сек
	1									1.5				
	2	скв. 1	2	5	15	20	40	20	2.66	1.65	15	-	-	12x10 ⁻³
1	3	скв. 1	5	-	0,5	1,5	3	95	2.7	1.96	26	30	20	42x10 ⁻⁷
	4	скв. 2	9	20	20	20	20	20	2.66	2	25	-	ı	31x10 ⁻³
	5	скв. 2	13	-	-	0,5	1,5	98	2.72	1.92	32	47	27	25x10 ⁻⁹
	1									1.45				
	2	скв.1	2.0	1.0	2.0	3.0	16.0	78.0	2.66	1.70	16	-	-	15x10 ⁻³
2	3	скв. 1	5.0	1.0	1,5	1,5	4.0	92.0	2.68	2.02	17	19	12	23x10 ⁻⁷
	4	скв. 2	7.0	10.0	15.0	15.0	40.0	20.0	2.66	2.00	25	-	-	28x10 ⁻³
	5	скв. 2	11.0	-	0,5	0,5	1,0	98.0	2.74	2.00	27	41	23	21x10 ⁻⁹
	1							Γ						
	2	скв.1	1.0	1.0	2.0	4.0	5.0	88.0	2.68	1.90	22	22	17	12x10 ⁻⁶
3	3	скв.1	8.0	10.0	15.0	15.0	20.0	40.0	2.66	2.00	25	-	-	25x10 ⁻³
	4	скв.2	5	-	0,5	1,5	3.0	95.0	2.7	1.93	23	30	18	27x10 ⁻⁷
	5	скв.2	12.0	-	0,5	0,5	1,0	98.0	2.74	1.96	34	53	30	18x10 ⁻⁹
	1									1,60				
	2	скв.1	3.0	-	2.0	2.0	2.0	94.0	2.68	1.94	35	30	20	30x10 ⁻⁷
4	3	скв.1	5.0	-	1.0	1.0	2.0	96.0	2.67	2.07	19	21	15	25x10 ⁻³
	4	скв.2	7.0	-	0,5	1,0	1,5	97	2.74	2.01	27	44	24	10x10 ⁻⁹
	5	скв. 2	11.0	5.0	15.0	35.0	20.0	25.0	2.64	1.99	20	-	-	36x10 ⁻³
	1			_						1.55				
	2	скв.1	2	5	15	20	40	20	2.66	1.9	28	-	-	11x10 ⁻³
5	3	скв. 1	5	-	0,5	1,5	3	95	2.7	1.96	25	36	22	8x10 ⁻⁸
	4	скв.2	9	15	15	25	25	20	2.67	1.97	17	-	-	19x10 ⁻³
	5	скв. 2	13	-	-	0,5	1,5	98	2.72	2.04	26	38	23	42x10 ⁻⁹

Продолжение таблицы А.1

<u> </u>	יטאונונטו	INC TOOTIN	цо, , ,, ,											
	1									1.60		-		
	2	скв.1	3.0	4.0	6.0	10.0	20.0	60.0	2.65	1.80	20	-	-	12x10 ⁻³
	3	скв. 1	5.0	1.0	2.0	3.0	16.0	78.0	2.7	2.00	19	22	16	16x10 ⁻⁵
6	4	скв.2	8	-	0,5	1,5	3	95	2.72	2.00	26	37	23	8x10 ⁻⁸
	5	скв. 2	12.0	-	0,5	0,5	1,0	98.0	2.76	1.90	27	47	23	15x10 ⁻⁹
	1									1.45				
	2	скв.1	2	1	1	1,5	1,5	95	2.68	1.9	22	22	17	12x10 ⁻⁷
7	3	скв. 1	5	-	0,5	1,5	2,5	96	2.7	1.92	23	28	17	13x10 ⁻⁸
	4	скв.2	9	-	ı	0,5	1,5	98	2.72	1.9	32	48	28	35x10 ⁻⁹
	5	скв. 2	13	24	27	20	25	14	2.65	2.05	20	-	-	45x10 ⁻³
	1									1.45				
0	2	скв.1	2	1	1	1,5	1,5	95	2.66	1.85	25	25	20	12x10 ⁻⁶
8	3	скв. 1	6	•	0,5	1,5	2,5	96	2.67	1.82	25	29	18	83x10- ⁸
	4	скв.2	9	-	0,5	0,5	1,0	98	2.72	1.96	31	48	28	35x10 ⁻⁹
	5	скв. 2	12	-	-	0,5	1,5	98	2.74	2	28	50	26	22x10 ⁻⁹
	1					1.5								
	2	скв.1	2	5	20	15	45	15	2.66	1.7	16	-	-	12x10 ⁻³
9	3	скв. 1	5	20	34	16	15	15	2.65	1.99	20	-	-	40x10 ⁻³
	4	скв.2	9	20	20	20	20	20	2.66	2	22	-	-	30x10 ⁻³
	5	скв. 2	13	-	-	0,5	1,5	98	2.71	2	31	45	29	25x10 ⁻⁹
	1									1.5				_
	2	скв. 1	2	-	-	0,5	1,5	98	2.72	2	29	32	16	25x10 ⁻⁷
10	3	скв. 1	4,5	5	16	14	31	34	2.67	1.96	26	-	-	8x10 ⁻⁴
	4	скв.2	7	20	34	16	15	15	2.66	1.98	24	-	-	24x10 ⁻³
	5	скв.2	10	20	20	20	20	20	2.65	2	22	-	-	38x10 ⁻³

Таблица А.2 – Расчётные усилия в сечениях

			Вари	ант 1			Вари	ант 2			Вари	ант 3	
Nº сечения	Наименование зда- ния	расчётные сечения	N _{іі,} кН (кН/м)	М _{іі,} кН · м	Q _{іі,} кН	расчётные сечения	N _{іі,} кН (кН/м)	М _{іі,} кН · м	Q _{іі,} кН	расчётные сечения	N _{іі,} кН (кН/м)	М _{іі,} кН · м	Q _{іі,} кН
4	1 Промышленное здание	1 – 1	1013,4	120,6	56,1	2-2	1295,2	110,4	40,8	1 – 1	1452,6	132,1	61,8
'		4 – 4	306,4	_	_	4 – 4	280,7	_	_	4 – 4	264,3	_	_
2	Фабричный корпус	1 – 1	956,3	101,4	46,2	4 – 4	821,6	71,2	30,6	1 – 1	1105,6	95,7	31,6
	Фаоричный корпус	3 – 3	324,4	1	ı	2 – 2	423,7	_	ı	3 – 3	291,4	-	_
3	Крупноблочная	1 – 1	954,1	ı	ĺ	1 – 1	1125,3	-	I	1 – 1	1021,2	ı	_
3	5-этажная школа	2 – 2	260,2	1	ı	3 – 3	345,4	_	ı	5 – 5	386,7	-	_
4	Химический корпус	1 – 1	1064,5	106,4	46,1	2 – 2	1421,3	135,2	51,6	3 – 3	1238,1	114,4	44,3
4	лимический корпус	4 – 4	_	ı	ı	4 – 4	_	-	ı	4 – 4	_	-	_
5	Сборочный цех	1 – 1	1418,6	124,4	22,7	2 – 2	1284,5	106,8	34,2	2 – 2	1005,5	94,6	31,3
5	Соорочный цех	4 – 4	321,6	ı	ı	3 – 3	981,4	-	ı	4 – 4	294, 3	ı	_
6	Административное	1 – 1	1816,4	98,4	24,3	2 – 2	2425,4	116,4	35,2	2 – 2	2116,5	164,8	40,5
0	здание	4 – 4	314,6	ı	ı	3 – 3	841,3	76,4	20,1	4 – 4	256,7	_	_
7	Сельский клуб	1 – 1	1962,1	1	ı	1 – 1	1542,8	-	ı	1 – 1	1734,2	1	_
_ ′	Сельский клуо	4 – 4	185,4	ı	ı	2 – 2	354,1	_	ı	3 – 3	296,4	_	_
8	Вычислительный	1 – 1	2421,6	164,2	21,4	2 – 2	2145,4	153,1	28,3	2 – 2	1916,5	154,3	35,1
0	центр	4 – 4	241,4	ı	Ī	3 – 3	326,4	-	ı	4 – 4	281,4		_
9	Учебный корпус	1 – 1	2165,3	1	-	2 – 2	1824,5	-	ı	1 – 1	2483,5	_	_
3	эчесный корпус	4 – 4	310,4	-	ı	3 – 3	250,6	-	ı	4 – 4	340,8	_	_
10	Спортивный корпус	3 – 3	840,4	1	-	3 – 3	1216,6	-	ı	3 – 3	1032,4	_	_
10	опортивный корпус	2 – 2	185,6	ı	ı	5 – 5	264,8	-	ı	4 – 4	245,4	-	_

Таблица Б.1 - Классификация песчаных грунтов по гранулометрическому составу

Грунт	Размер	Масса частиц, % от массы воздушно-
трунт	частиц, мм	сухого грунта
Гравелистый	>2	>25
Крупный	>0,5	>50
Средней крупности	>0,25	>50
Мелкий	>0,1	≥75
Пылеватый	>0,1	<75

Примечание: наименование грунта принимается по первому удовлетворяющему показателю в порядке их расположения в таблице.

Таблица Б.2 - Классификация глинистых грунтов по числу пластичности

Грунт	Число пластичности, %
Супесь	1≤J _p ≤7
Суглинок	7 <j<sub>p≤17</j<sub>
Глина	J _p >17

Таблица Б.3 - Разновидности песчаных грунтов по коэффициенту пористости

Песок	Значения коэффициента пористости					
TIECOK	плотные	средней плот- ности	рыхлые			
Гравелистый, крупный и средней крупности	e<0,55	0,55≤e≤0,7	e>0,70			
Мелкий	e<0,6	0,60≤e≤0,75	e>0,75			
Пылеватый	e<0,6	0,60≤e≤0,8	e>0,8			

Таблица Б.4 - Разновидности песчаных грунтов по степени влажности

Грунт	Степень влажности
Маловлажный	0 <s<sub>r≤0,5</s<sub>
Влажный	0,5< S _r ≤0,8
Насыщенный водой	0,8< S _r ≤1,0

Таблица Б.5 - Разновидности пылевато-глинистых грунтов по показателю текучести

Грунт	Показатель текучести
Супесь:	
твердая	I _L <0
пластичная	0≤ I _L ≤I,0
текучая	I _L >1,0
Суглинок и глина:	
твердые	<i>I</i> _L <0
полутвердые	$0 \le I_L \le 0.25$
тугопластичные	$0.25 < I_L \le 0.5$
мягкопластичные	$0.5 < I_L \le 0.75$
текучепластичные	0,75< I _L ≤1,0
текучие	$I_L > 1,0$

Таблица Б.6 — Разновидности песчаных грунтов по результатам зондирования

Вид песчаного грунта	Разновидность песчаных грунтов по прочности	Удельное сопротивление грунта под конусом зонда q_c , Мпа	Условное динамическое сопротивление грунта p_d , Мпа	
Гравелистый, крупный,	Прочный	<i>q_c</i> > 15,0	$p_d > 14.0$	
средней крупности, независимо от влажно-	Средней прочности	$2.8 \le q_c \le 15.0$	$2.8 \le p_d \le 14.0$	
сти	Малопрочный	<i>q_c</i> < 2,8	p _d < 2,8	
	Прочный	$q_c > 8.3$	<i>p</i> _d > 8,5	
Мелкий, независимо от влажности	Средней прочности	$1,7 \le q_c \le 8,3$	$2,2 \le p_d \le 8,5$	
	Малопрочный	<i>q_c</i> < 1,7	p _d < 2,2	
	Прочный	$q_c > 8.3$	<i>p</i> _d > 8,5	
Пылеватый маловлажный и влажный	Средней прочности	$1,2 \le q_c \le 8,3$	$1,5 \le p_d \le 8,5$	
	Малопрочный	<i>q_c</i> < 1,2	<i>p</i> _d < 1,5	
	Прочный	$q_c > 5.8$	_	
Пылеватый водонасы- щенный	Средней прочности	$1.0 \le q_c \le 5.8$	_	
щоттый	Малопрочный	<i>q_c</i> < 1,0	_	

Таблица Б.7 — Разновидности глинистых грунтов по результатам зондирования

Тип, подгруппа (генезис) глинистых грунтов	Разновидность глинистых грунтов по прочности	Удельное сопротивление грунта под конусом зонда q_c , Мпа	Условное динамическое сопротивление грунта $ ho_{\!\scriptscriptstyle d}$, Мпа		
	Очень прочные	$q_c > 6.5$	<i>p</i> _d > 8,3		
Супесь, суглинок, глина	Прочные	$2,5 < q_c \le 6,5$	$2.8 < p_d \le 8.3$		
(моренные)	Средней прочности	$1 \le q_c \le 2.5$	$1,2 \le p_d \le 2,8$		
	Слабые	<i>q_c</i> < 1	<i>p</i> _d < 1,2		
	Очень прочные	<i>q_c</i> >10			
Супесь, суглинок, глина	Прочные	$4,6 < q_c \le 10$	_		
(кроме моренных)	Средней прочности	$1 \le q_c \le 4,6$	_		
	Слабые	<i>q_c</i> < 1			

Таблица Б.8 — Нормативные значения c_n , ϕ_n , E_0 для песчаных грунтов четвертичных отложений

Наименование	Обозначение		Значения хара	актеристик при е	
грунтов	характеристик	0,45 0,55		0,65	0,75
	C _n	2	1	_	_
Пески гравели- стые и крупные	φ_n	43°	40°	38°	35°
отыс и круппыс	E_{0}	50	40	30	15
	C _n	3	2	1	_
Пески средней крупности	φ_n	40°	38°	35°	33°
1,00171	E_{o}	45	35	25	13
	c _n	6	4	2	_
Пески мелкие	φ_n	38°	36°	32°	28°
	E_{o}	40	30	20	12
	C _n	8	6	4	2
Пески пылеватые	φ_n	36°	34 °	30°	26°
	E_0	35	25	18	11

Таблица Б.9 — Нормативные значения c_n , ϕ_n , E_0 для глинистых (не моренных и не лессовых) грунтов четвертичных отложений

не лессовых) і	не лессовых) грунтов четвертичных отложении								
Наименование	Пределы I_L	Обозначения		Знач	ения ха	арактер	оистик і	три е	
грунтов	пределы п	характеристик	0,45	0,55	0,65	0,75	0,85	0,95	1,05
		C _n	21	17	15	13	_	_	_
	$0 \le I_L \le 0.25$	φ_n	30°	29°	27°	24°	_	_	_
Cymany		E_0	32	24	16	10	7	_	_
Супеси		c_n	19	15	13	11	9	_	_
	$0,25 < I_L \le 0,75$	φ_n	28°	26°	24°	21°	18°	_	_
		E_0	31	23	15	9	6	_	_
		c_n	47	37	31	25	22	19	_
	$0 < I_L \le 0.25$	φ_n	26°	25°	24°	23°	22°	20°	_
		E_0	34	27	22	17	14	11	_
		c_n	39	34	28	23	18	15	_
Суглинки	$0,25 < I_L \le 0,5$	φ_n	24°	23°	22°	21°	19°	17°	_
		E_0	32	25	19	14	11	8	_
		C _n	_	_	25	20	16	14	12
	$0.5 < I_L \le 0.75$	ϕ_{n}	_	_	19°	18°	16°	14°	12°
		E_0	_	_	17	12	8	6	5
		c_n	_	81	68	54	47	41	36
	$0 < I_L \le 0.25$	φ_n	_	21°	20°	19°	18°	16°	14°
		E_0	_	28	24	21	18	15	12
Глины		C _n	_		57	50	43	37	32
	$0.25 < I_L \le 0.5$	φ_n	_	_	18°	17°	16°	14°	11°
	$0.23 < I_L \ge 0.5$	E_o			21	18	15	12	9
		- 0				10	10	12	

Таблица Б.10 — Условное расчетное сопротивление R_0 песчаных грунтов

	Значение R_0 , кПа, в зависимости от прочности песков							
Пески	Прочные при коэффициенте пористости е от 0,45 до 0,54	Средней прочности при коэффици- енте пористости е от 0,55 до 0,75						
Крупные	600	500						
Средние	500	400						
Мелкие:								
маловлажные и влажные	400	300						
водонасыщенные	300	250						
Пылеватые:								
маловлажные	300	250						
влажные	250	150						
водонасыщенные	200	100						

Примечание — В таблице значения R_0 даны для меньшего значения e. Для большего значения e приведенные в таблице значения R_0 для прочных грунтов следует умножать на 0,9, а для грунтов средней прочности — на 0,8; для промежуточных значений e значение R_0 допускается определять линейной интерполяцией.

Таблица Б.11 — Условное расчетное сопротивление R_0 глинистых непросадочных грунтов (кроме моренных и лессовых)

Глинистые грунты	Коэффициент	Значение R_0 , кПа, при показателе I_L , равном						
T TWINNET BIO TPYTT BI	пористости е	0	0,5	0,75				
0:700	0,5	400	300	250				
Супеси	0,7	300	250	200				
	0,5	400	350	300				
Суглинки	0,7	350	300	200				
	0,85	250	200	150				
	0,5	600	500	400				
F=	0,6	500	400	300				
Глины	0,8	300	250	200				
	1,0	250	200	150				

Таблица Б.12 — Нормативные значения c_n , φ_n , песчаных грунтов по данным динамического зондирования

Halviri Iookoro oon	_,,,peza,,,,,	I							
Вид песчаных грунтов	Обозначение характеристик	Характеристики песчаных грунтов при условном динамическом сопротивлении грунта p_d , МПа							
трунтов	грунтов	1,5	2	3	5	10	15	17,5	
Крупные	<i>c</i> , кПа ф	_	0 34°	0 36°	0,5 38°	0,8 39°	1,5 40°	2,0 41°	
Средние	<i>с</i> , кПа Ф	0 31°	0 32°	0 33°	1,1 35°	1,7 37°	2,5 38°	3,0 39°	
Мелкие	<i>c</i> , кПа Ф	0 28°	1,0 29°	1,5 30°	2,1 32°	3,5 35°	4,0 36°	4,5 37°	
Пылеватые ма- ловлажные и влажные	<i>c</i> , кПа ф	1,5 24°	2,0 26°	3,0 28°	4,1 30°	5,5 33°	6,0 34°	6,5 35°	

Примечания

- 1 Для песчаных грунтов с промежуточными значениями p_d значения c и ϕ следует определять интерполяцией.
- 2 При значениях p_d более 17,5 МПа значения c и ϕ следует принимать как для p_d =17,5 МПа.
- 3 Для малопрочных песчаных грунтов значения c и ϕ следует уточнять прямыми испытаниями (см. 5.14).

Таблица Б.13 — Нормативные значения c_n , φ_n , пылевато-глинистых грунтов по данным динамического зондирования

Генетический тип грун-	Вид	Обозначения	Характеристики грунтов при условном динамическом сопротивлении грунта p_{d} , МПа							
тов	грунтов	характеристик грунтов	1,2	2,4	3,6	6	9	12	бо- лее 15	
Ледниковые (моренные)	Супеси	<i>с</i> , кПа ф	23 26°	26 27°	30 27°	36 28°	40 29°	42 30°	48 31°	
	Суглинки	<i>с</i> , кПа Ф	30 25°	35 26°	40 26°	45 27°	50 28°	52 29°	56 29°	
Озерно-ледниковые	Суглинки и глины	<i>с</i> , кПа φ	36 14°	42 14°	56 13°	65 12°	85 11°	100 10°	130 9°	
Лессовидные (непро- садочные)	Супеси Суглинки	с, кПа φ с, кПа	18 22° 25	22 26° 28	25 27° 34	30 27° 36	32 28° 40	34 28° 45	36 29° 52	
Пылевато-глинистые	Супеси	φ <i>c</i> , κΠa	21°	23°	24° 15	25°	26° 19	27° 21	28°	
четвертичные отложения (кроме вышеперечисленных) с содержанием органики до 10 %	Суглинки	φ c, κΠa φ	18° 15 16°	21° 22 18°	24° 25 20°	27° 28 22°	29° 35 24°	29° 40 25°	30° 47 26°	

Примечания: 1. При промежуточных значениях p_d значения c и ϕ следует определять интерполяцией.

2. Значения c и ϕ , при значениях p_d = 1,5 МПа и более, следует уточнять прямыми испытаниями

Таблица Б.14 – Нормативные значения модуля деформаций грунтов *E* по данным динамического зондирования

Генетический тип	E , МПа, при условном динамическом сопротивлении грунта p_d , МПа								
и вид грунтов	1,2	2	3	5	10	15			
Пески гравелистые, крупные, независимо от влажности	11	14	16	23	40	55			
Пески средние, независимо от влажности	10	14	16	22	35	50			
Пески мелкие, независимо от влажности	9	12	15	21	33	45			
Пески пылеватые маловлажные и влажные	8	11	14	20	32	46			
Моренные супеси и суглинки	10	13	16	22	38	54			
Озерно-ледниковые суглинки и глины	9	12	18			_			
Лессовидные супеси и суглинки	8	12	15	19	30	_			
Пылевато-глинистые четвертичные отложения (кроме вышеперечисленных) с содержанием органики до 10 %	6	8,5	13	16	_	_			

Примечания

- 1 При промежуточных значениях p_d значения E следует определять интерполяцией.
- 2 При значениях p_d более 15 МПа значения E следует принимать как для p_d = 15 МПа.

Таблица Б.15 — Условное расчетное сопротивление грунта основания R_0 по данным динамического зондирования

Генетический тип грунтов	Вид грунтов	R_0 , МПа, при условном динамическом сопротивлении грунта p_d , МПа							
трунтов		1,2	1,5	2	3	5	10	15	
Пески естественного	Крупные	_	_	1	0,35	0,41	0,48	0,53	
сложения	Средние	_	_		0,29	0,35	0,43	0,47	
	Мелкие	_	_	0,19	0,23	0,28	0,35	0,41	
	Пылеватые	_	0,14	0,18	0,21	0,25	0,33	0,37	
Моренные	Супеси, суглинки	0,20	0,28	0,38	0,44	0,51	0,57	_	
Озерно-ледниковые	Суглинки и глины	0,12	0,15	0,20	0,25	0,30	_	_	
Лессовидные (неводонасыщенные и непросадочные)	Супеси, суглинки	0,15	0,18	0,20	0,24	0,30	0,35	0,40	
Пылевато-глинистые четвертичные отложения (кроме вышеперечисленных) с содержанием органики до 10 %	Супеси, суглинки	0,10	0,12	0,15	0,20	0,25	_	_	

Примечания: 1. При промежуточных значениях p_d значения R_0 следует определять интерполяцией. 2. При значениях p_d более 15 МПа значения R_0 следует принимать как для p_d = 15 МПа.

Таблица Б.16 — Нормативные значения c_n , φ_n , песчаных грунтов по данным статического зондирования

' '	Обозначение характеристик	при у	Значение характеристик грунтов при удельном сопротивлении грунта под наконечником зонда $q_{\rm s}$, МПа								
	грунтов	1	2	3	5	8	10	15	20	30	Более 30
Крупные	<i>с</i> , МПа	—	—	—	—	—	0,001	0,001	0,001	0,002	0,002
	Ф	30°	32°	34°	36°	38°	39°	40°	41°	42°	43°
Средней	<i>c</i> , МПа	—	—	—	0,001	0,001	0,002	0,002	0,002	0,003	0,003
крупности	Ф	28°	30°	32°	35°	36°	37°	38°	38°	39°	40°
Мелкие	<i>с</i> , МПа	—	—	0,001	0,002	0,002	0,003	0,004	0,004	0,005	0,006
	Ф	26°	29°	30°	32°	34°	35°	36°	36°	37°	38°
Пылеватые	<i>c</i> , МПа	—	0,002	0,003	0,004	0,004	0,005	0,006	0,006	0,007	0,008
	Ф	24°	26°	28°	30°	32°	33°	34°	34°	35°	36°

Примечание — при промежуточных значениях $q_{\rm s}$ значения c и ϕ определяют интерполяцией.

Таблица Б.17 — Нормативные значения c_n , φ_n , пылевато-глинистых грунтов по данным статического зондирования

Генетический тип	Вид	Обозначения характеристик	Значение характеристик грунтов при удельном сопротивлении грунта под наконечником зонда $q_{ m s}$, МПа							
грунтов	грунтов	грунтов	1	2	3	5	8	10	Более 12	
Ледниковые	Супеси	<i>c</i> , M∏a	0,023	0,027	0,031	0,036	0,040	0,042	0,048	
(моренные) Суглинки	φ c , ΜΠα φ	26° 0,030 25°	27° 0,036 26°	27° 0,040 26°	28° 0,045 27°	29° 0,049 28°	30° 0,052 29°	31° 0,056 29°		
Озерно-ледни- ковые	Суглинки и глины	<i>c</i> , МПа Ф	0,036 14°	0,043 14°	0,056 13°	0,066 12°	0,087 11°	0,102 10°	0,130 9°	
Лессовидные (не- просадочные)	Супеси	<i>c</i> , МПа φ	0,018 22°	0,022 26°	0,026 27°	0,030 27°	0,032 28°	0,034 28°	0,036 29°	
	Суглинки	<i>c</i> , МПа φ	0,025 21°	0,030 23°	0,034 24°	0,036 25°	0,041 26°	0,046 27°	0,052 28°	
Пылевато-глинис- тые четвертич-	Супеси	<i>c</i> , МПа φ	0,011 18°	0,013 21°	0,015 24°	0,017 27°	0,019 29°	0,021 29°	0,024 30°	
ные отложения (кроме вышеперечисленных) с содержанием орга-	Суглинки	<i>c</i> , МПа Ф	0,016 16°	0,023 18°	0,025 20°	0,028 22°	0,035 24°	0,039 25°	0,047 26°	
нических веществ до 10 %										

Примечание — при промежуточных значениях $q_{\rm s}$ значения c и ϕ определяют интерполяцией.

Таблица Б.18 – Нормативные значения модуля деформаций грунтов *E* по данным статического зондирования

пым статического зондирования										
Песчаные грунты разного		Значения модуля деформации E , МПа, при удельном сопротивлении грунта под наконечником зонда $q_{ m s}$, МПа								
Teneral Issuers Sepassbarran	1	2	4	6	8	10	12	15	20	
Пески гравелистые, крупные, средние, независимо от влажности	10	15	21	25	32	38	45	50	60	
Пески мелкие, независимо от влажности	8	12	18	22	26	30	36	42	50	
Пески пылеватые неводонасыщен- ные	7	10	14	18	21	25	30	35	40	
Пески пылеватые водонасыщен- ные	6	8	10	14	18	21	25	30	35	

Примечания: 1. При значениях q_s более указанных в таблице значения E следует принимать по максимальным значениям, указанным в таблице.

- 2. Для грунтов с промежуточными значениями q_s значения E следует определять интерполяцией.
- 3. Модуль деформации E пылевато-глинистых грунтов определяется по формуле

$$E = \frac{3,14\alpha(1+\mu) \cdot (3-4\mu) \cdot q_s}{16 \cdot (1-\mu)},$$

где α — эмпирический коэффициент, равный:

— супесей— 8,8;— суглинков— 9,5;

— глин — 11;

 μ — коэффициент Пуассона, определяемый в лабораторных условиях по приборам трехосного сжатия или ориентировочно равный:

— " супесей — 0,35;
— " суглинков — 0,4;
— " глин — 0,45;

Таблица Б.19 — Условное расчетное сопротивление грунта основания R_0 по данным динамического зондирования

Генетический тип и вид грунтов	Значение условного расчетного сопротивления грунтов $R_{ m o}$, МПа, при удельном сопротивлении грунта под наконечником зонда $q_{ m s}$, МПа, равном								
	1	2	3	5	8	10	15		
Моренные глинистые грунты	0,13	0,21	0,29	0,45	0,60	0,60	0,60		
Пылевато-глинистые грунты (кроме моренных)	0,10	0,18	0,25	0,35	0,45	0,50	0,60		
Пески гравелистые, крупные и средние, независимо от влажности	_	0,15	0,20	0,30	0,40	0,50	0,70		
Пески мелкие, независимо от влажности	0,12	0,15	0,25	0,30	0,35	0,40	0,50		
Пески пылеватые неводонасыщенные	0,10	0,12	0,20	0,25	0,30	0,35	0,35		
Пески пылеватые водонасыщенные	0,08	0,10	0,15	0,20	0,25	0,30	0,30		

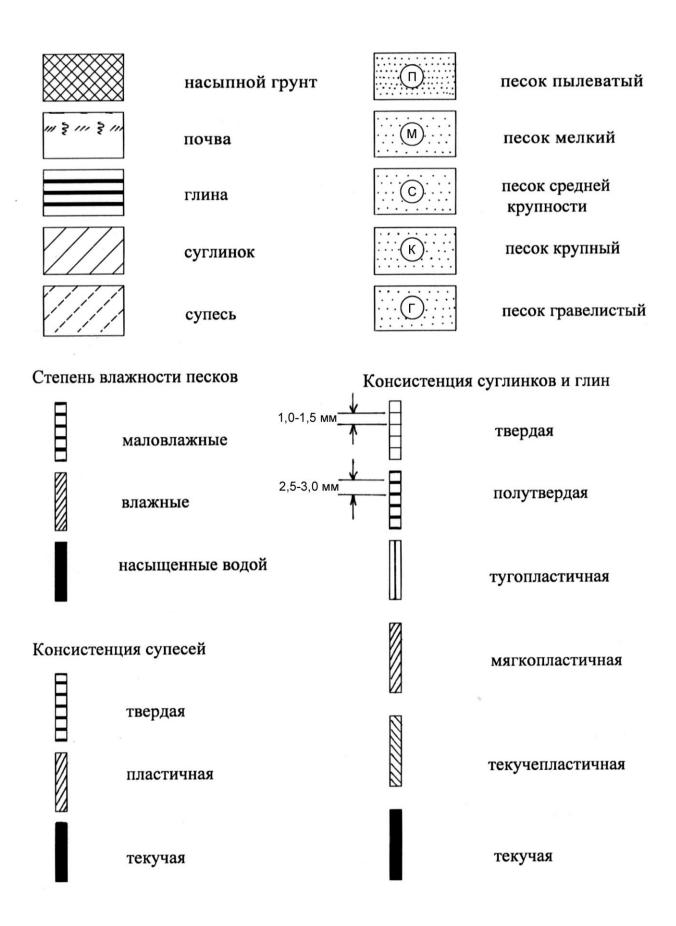


Рисунок Б.1 - Условные обозначения на инженерно-геологических разрезах

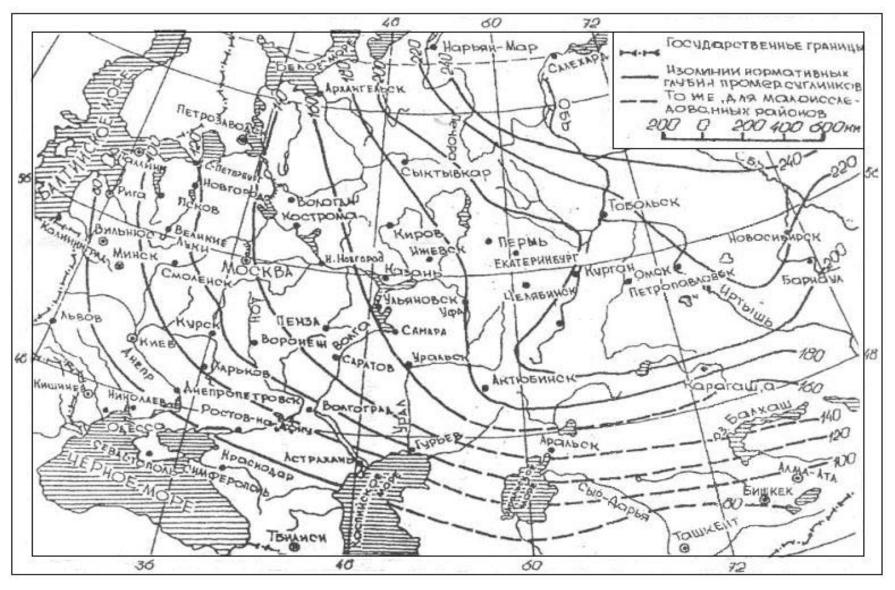


Рисунок В.1 - Карта нормативных глубин промерзания грунтов

Таблица В.1 — Рекомендуемые значения коэффициента k_h для наружных фундаментов отапливаемых зданий

Особенности сооружения	Коэффициент k_h при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, °C								
	0	5	10	15	20 и более				
Без подвала с полами, устраиваемыми									
по грунту	1,30	1,10	0,90	0,80	0,80				
	1,00	0,80	0,70	0,60	0,60				
на лагах по грунту	1,10	1,00	1,00	0,90	0,90				
	0,90	0,80	0,70	0,70	0,70				
по утепленному цокольному перекрытию	1,05	1,00	1,00	1,00	0,90				
	0,80	0,80	0,80	0,70	0,70				
С подвалом или техническим подпольем	0,80	0,70	0,60	0,50	0,40				

- 1 Приведенные в таблице значения коэффициента k_n относятся: в числителе к сечениям ленточных фундаментов под наружные стены, расположенным у углов сооружения на расстоянии не более 5,0 м от них, в знаменателе к сечениям оставшейся средней части длины наружных стен.
- 2 Для столбчатых и свайных фундаментов коэффициент k_h принимается: при расчетной температуре воздуха в помещении, примыкающем к фундаментам, не более 10 °C по таблице В.1; при температуре воздуха выше 10 °C по таблице В.1 с увеличением соответствующих значений в 1,15 раза, но не более чем k_h = 1,00.
- 3 Приведенные значения k_h относятся к фундаментам, у которых расстояние от внешней грани стены до края подошвы фундамента a_f менее или равно 0,5 м; при значении a_f более 0,5 м значения k_h увеличиваются на 0,10, но не более чем k_h = 1,00.
- 4 К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии помещения первого этажа сооружений.
- 5 При промежуточных значениях температуры воздуха помещений значения k_h принимаются с округлением до ближайшего большего значения, указанного в таблице.

Таблица В.2 — Значения коэффициентов γ_{c1} и γ_{c2}

Грунты основания	Коэффициент _{γ1}	Коэффициент γ _{c2} для сооружений с жесткой и ограниченно-жесткой конструктивными схемами при отношении длины сооружения или его отсека к высоте L/H, равном				
		4 и более	1,5 и менее			
Крупнообломочные с песчаным заполнителем и песчаные, кроме мелких и пылеватых	1,4	1,2	1,4			
Пески мелкие	1,3	1,1	1,3			
Пески пылеватые: маловлажные и влажные насыщенные водой	1,25 1,1	1,0 1,0	1,2 1,2			
Глинистые, а также крупнообломочные с глинистым заполнителем и показателем текучести грунта или заполнителя $I_L \leq 0,25$	1,25	1,0	1,1			
То же, при 0,25 < <i>I</i> _L ≤ 0,5	1,2	1,0	1,1			
То же, при $I_L > 0,5$	1,1	1,0	1,0			

- 1 К сооружениям с жесткой и ограниченно-жесткой конструктивными схемами относятся сооружения, конструкции которых специально приспособлены к восприятию усилий от деформаций оснований, в том числе за счет применения специальных мероприятий (диски, диафрагмы жесткости, железобетонные пояса и другие мероприятия).
- 2 Для зданий с гибкой конструктивной схемой значение коэффициента γ_{c2} принимается равным единице.
- 3 Для малопрочных песков и слабых глинистых грунтов γ_{c1} и γ_{c2} принимаются равными единице.

Таблица В.3 — Коэффициенты M_{γ}, M_{q}, M_{c}

Угол		эффициент	-	Угол	Ко	эффициент	ГЫ
внутреннего трения φ _{іі} , град	M_{γ}	M_q	M_c	внутреннего трения φ _{іі} , град	M_{γ}	M_q	M_c
0°	0	1,00	3,14	23°	0,69	3,65	6,24
1°	0,01	1,06	3,23	24°	0,72	3,87	6,45
2°	0,03	1,12	3,32	25°	0,78	4,11	6,67
3°	0,04	1,18	3,41	26°	0,84	4,37	6,90
4°	0,06	1,25	3,51	27°	0,91	4,64	7,14
5°	0,08	1,32	3,61	28°	0,98	4,93	7,40
6°	0,10	1,39	3,71	29°	1,06	5,25	7,67
7°	0,12	1,47	3,82	30°	1,15	5,59	7,95
8°	0,14	1,55	3,93	31°	1,24	5,95	8,24
9°	0,16	1,64	4,05	32°	1,34	6,34	8,55
10°	0,18	1,73	4,17	33°	1,44	6,76	8,88
11°	0,21	1,83	4,29	34°	1,55	7,22	9,22
12°	0,23	1,94	4,42	35°	1,68	7,71	9,58
13°	0,26	2,05	4,55	36°	1,81	8,24	9,97
14°	0,29	2,17	4,69	37°	1,95	8,81	10,37
15°	0,32	2,30	4,84	38°	2,11	9,44	10,80
16°	0,36	2,43	4,99	39°	2,28	10,11	11,25
17°	0,39	2,57	5,15	40°	2,46	10,85	11,73
18°	0,43	2,73	5,31	41°	2,66	11,64	12,24
19°	0,47	2,89	5,48	42°	2,88	12,51	12,79
20°	0,51	3,06	5,66	43°	3,12	13,46	13,37
21°	0,56	3,24	5,84	44°	3,38	14,50	13,98
22°	0,61	3,44	6,04	45°	3,66	15,64	14,64

Таблица В.4 – Предельные деформации основания сооружений

	Предельн	ые деформаці	ии основания
Вид сооружения	Относительная разность осадок (ΔS/L _u)	крен (<i>i_u</i>)	средняя S _{um} (максимальная S _u _{max}) осадка, см
1	2	3	4
1 Производственные и гражданские одноэтажные и многоэтажные сооружения: с полным каркасом:			
 а) железобетонным б) железобетонным при наличии железобетонных поясов или монолитных перекрытий 	0,002	-	8(10)
в) стальным	0,005	-	15(18)
монолитные	0,004	-	12
	0,003	-	12(15)
2 Сооружения, в конструкциях которых не возникают усилия от неравномерных осадок	0,006	-	15(20)
3 Многоэтажные бескаркасные сооружения с несущими стенами из:			
крупных панелей	0,0016	0,005	10(12)
крупных блоков или кирпичной кладки без армирования крупных блоков или кирпичной кладки с армированием, в том числе с устройством	0,0020	0,005	10(12)
железобетонных поясов, монолитных перекрытий и сооружений монолитной конструк- ции	0,0024	0,005	15(18)
4 Сооружения элеваторов из железобетонных конструкций			
производственное здание и силосный корпус монолитной конструкции на одной фундаментной плите	-	0,003	40
производственное здание и силосный корпус сборной конструкции	-	0,003	30
отдельно стоящей силосной корпус монолитной конструкции	-	0,004	40
отдельно стоящей силосной корпус сборной конструкции	-	0,004	30
отдельно стоящее производственное здание	-	0,004	25

Продолжение приложения В Продолжение таблицы В.4

1	2	3	4
5 Дымовые трубы высотой (Н), м:			
до 100 включ.	-	0,005	40
Св. 100 « 200»	-	1/(2H)	30
« 200» « 300»	-	1/(2H)	20
более 300	-	1/(2H)	10
6 Жесткие сооружения высотой до 100 м, кроме указанных в разделах 4 и 5	-	0,004	20
7 Антенные сооружения связи:			
стволы мачт заземления	-	0,002	20
стволы мачт, электрически изолированные	-	0,001	10
башни радио	0,002	-	-
башни коротковолновых радиостанций	0,0025	-	-
башни (отдельные блоки)	0,001	-	-
8 Опоры воздушных линий электропередачи:			
промежуточные прямые	0,003	0,003	-
анкерные и анкерно-угловые, угловые, концевые, порталы открытых распределитель-			
ных устройств	0,0025	0,0025	-
специальные переходные	0,0020	0,0020	-

- 1 Предельные значения относительного прогиба зданий принимаются равными 0,5 $(\Delta S/L)_u$, а относительного выгиба 0,25 $((\Delta S/L)_u$.
- 2 Предельные значения подъёма основания, сложенного набухающими грунтами, допускается принимать: максимальный и средний подъём 25%, относительную неравномерность осадок здания в размере 50% от соответствующих предельных значений деформаций, а относительный выгиб $0.25((\Delta S/L)_0$.
- 3 Для оснований I категории сложности, приведенных в приложении Б, предельные значения максимальных и средних осадок допускается увеличить на 20%, для сооружений, перечисленных в поз. 1-3, с фундаментами в виде монолитных перекрёстных лент, сплошных плит и СПФ предельные значения средних осадок допускается увеличить в 1,5 раз.
- 4 При обосновании (на основе выполненных исследований и согласований в установленном порядке) допускается принимать предельные значения деформаций, отличающиеся от приведенных в настоящей таблице.

Таблица В 5 – Коэффициент изменения напряжений по глубине – а

Относительная			Коэф	фициент α	для фунда	аментов		
глубина	KOVEDI IV	прямо	угольных с	соотноше	нием сторс	нη = I/b, p	авным	ленточных
$\xi = 2z /b$	круглых -	1, 0	1,4	1,8	2,4	3,2	5,0	(η ≥ 10)
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,4	0,949	0,960	0,972	0,975	0,976	0,977	0,977	0,977
0,8	0,756	0,800	0,848	0,866	0,876	0,879	0,881	0,881
1,2	0,547	0,606	0,682	0,717	0,739	0,749	0,754	0,755
1,6	0,390	0,449	0,532	0,578	0,612	0,629	0,639	0,642
2,0	0,285	0,336	0,414	0,463	0,505	0,530	0,545	0,550
2,4	0,214	0,257	0,325	0,374	0,419	0,449	0,470	0,477
2,8	0,165	0,201	0,260	0,304	0,349	0,383	0,410	0,420
3,2	0,130	0,160	0,210	0,251	0,294	0,329	0,360	0,374
3,6	0,106	0,131	0,173	0,209	0,250	0,285	0,319	0,337
4,0	0,087	0,108	0,145	0,176	0,214	0,248	0,285	0,306
4,4	0,073	0,091	0,123	0,150	0,185	0,218	0,255	0,280
4,8	0,062	0,077	0,105	0,130	0,161	0,192	0,230	0,258
5,2	0,053	0,067	0,091	0,113	0,141	0,170	0,208	0,239
5,6	0,046	0,058	0,079	0,099	0,124	0,152	0,189	0,223
6,0	0,040	0,051	0,070	0,087	0,110	0,136	0,173	0,208
6,4	0,036	0,045	0,062	0,077	0,099	0,122	0,158	0,196
6,8	0,031	0,040	0,055	0,064	0,088	0,110	0,145	0,185
7,2	0,028	0,036	0,049	0,062	0,080	0,100	0,133	0,175
7,6	0,024	0,032	0,044	0,056	0,072	0,091	0,123	0,166
8,0	0,022	0,029	0,040	0,051	0,066	0,084	0,113	0,158
8,4	0,021	0,026	0,037	0,046	0,060	0,077	0,105	0,150
8,8	0,019	0,024	0,033	0,042	0,055	0,071	0,098	0,143
9,2	0,017	0,022	0,031	0,039	0,051	0,065	0,091	0,137
9,6	0,016	0,020	0,028	0,036	0,047	0,060	0,085	0,132
10,0	0,015	0,019	0,026	0,033	0,043	0,056	0,079	0,126
10,4	0,014	0,017	0,024	0,031	0,040	0,052	0,074	0,122
10,8	0,013	0,016	0,022	0,029	0,037	0,049	0,069	0,117
11,2	0,012	0,015	0,021	0,027	0,035	0,045	0,065	0,113
11,6	0,011	0,014	0,020	0,025	0,033	0,042	0,061	0,109
12,0	0,010	0,013	0,018	0,023	0,031	0,040	0,058	0,106

- 1 Обозначения: b ширина или диаметр фундамента, l длина фундамента.
- 2 Для фундаментов, имеющих подошву в форме правильного многоугольника с площадью A, значения α принимаются как для круглых фундаментов радиусом $r = \sqrt{A/\pi}$.
- 3 Для промежуточных значений ξ и η коэффициент α определяется линейной интерполяцией.

Приложение Г

Таблица Г.1 - Сваи забивные железобетонные серии 1.011.1-10

Марка сваи	Размерь			Расход бето-	Вес, кН	Примечание
•	L	В	тона	на, м3		•
C30.20-13		200		0,12	3,1	1-4∅10S240
C30.25-13	3000	250	C12/15	0,19	4,7	2,3-4∅10S400
C30.30-23		300		0,28	7,0	4-4∅12S240
C40.20-12		200		0,16	4,1	5,6-4Ø12S400
C40.25-13		250	C12/15	0,26	6,4	7,8-4Ø14S400
C40.30-13	4000	300		0,37	9,3	9-4Ø16S400
C40.35-13	4000	350		0,50	12,6	10-4Ø18S400
C40.40-12		400	C16/20	0,66	16,4	11-4Ø20S400
C40.40-56		400		0,66	16,4	12-4Ø22S400
C50.20-16		200		0,20	5,11	13-4Ø25S400
C50.25-16		250	C12/15	0,32	7,99	13-40233400
C50.30-16	5000	300		0,46	11,5	
C50.35-16	3000	250		0,63	15,7	
C50.40-12		400	C16/20	0,82	20,4	
C50.40-56		400		0,82	20,4	
C60.20-56				0,24	6,1	
C60.25-16		200		0,24	9,6	
C60.30-23		250	C12/15	0,50	9,0	
C60.30-56		300	012/13	0.55	40.0	
		300		0,55	13,8	
				0,55	13,8	
C60.30-18	6000			0,55	13,8	
C60.35-13		300				
C60.35-6		350		0,75	18,7	
C60.40-12		350	C16/20	0,75	18,7	
C60.40-58		400		0.00	24.4	
		400		0,98	24,4	
				0,98	24,4	
C70.30-46		300	C12/15	0,64	16,0	
C70.30-89		300	C16/20	0,64	16,0	
C70.35-46	7000	350	C12/15	0,87	24,4	
C70.35-810	7000	350	C16/20	0,87	24,4	
C70.40-46		400	C12/15	1,14	28,4	
C70.40-812		400	C16/20	1,14	28,4	
C80.30-46		300		0,73	18,3	
C80.30-810		300	C16/20	0,73	18,3	
C80.30-11		300	C20/25	0,73	18,3	
C80.30-46	8000	300		0,73	18,3	
C80.30-810		300	C16/20	0,73	18,3	
C80.30-11		300	C20/25	0,73	18,3	

Продолжение таблицы Г.1

Марка сваи	Размерь	ol, MM	Класс бе-	Расход бето-	Вес, кН	Примонацио
·	L	В	тона	на, м3	Dec, Ki i	Примечание
C80.35-56 C80.35-811 C80.40-56	8000	350 350	C16/20	0,99 0,99	24,8 24,8	1-4⊘10S240 2,3-4⊘10S400 4-4⊘12S240
C80.40-813	0000	400 400	010/20	1,30 1,30	32,4 32,4	5,6-4⊘12S400 7,8-4⊘14S400
C90.30-56 C90.30-810		300 300	C16/20	0,82 0,82 0,82	20,5 20,5 20,5	9-4∅16S400 10-4∅18S400 11-4∅20S400
C90.30-11		300	C20/25	0,62	20,5	12-4∅22S400
C90.35-56	9000	350		1,12	27,9	13-4∅25S400
C90.35-812		350	C16/20	1,12	27,9	
C90.40-56		400	010/20	1,46	36,4	
C90.40-810		400		1,46	36,4	
C90.40-1113		400	C20/25	1,46	36,4	
C100.30-6		300	C16/20	0,91	22,8	
C100.30-810		300	00 C16/20	0,91	22,8	
C100.35-1113		300	C20/25	0,91	22,8	
C100.35-6 C100.35-810	10000	350 350	C16/20	1,24 1,24	31,0 31,0	
C100.35-1118		350	C20/25	1,24	31,0	
C100.40-6 C100.40-810		350 400 400	C16/20	1,62 1,62	40,4 40,4	
C100.40-1113		400	C20/25	1,62	40,4	
C110.30-89		300	C16/20	1,00	25,0	
C110.30-1013		300	C20/25	1,00	25,0	
C110.35-89	11000	350	C16/20	1,36	34,0	
C110.35-1013	11000	350	C20/25	1,36	34,0	
C110.40-89		400	C16/20	1,78	44,0	
C110.40-1013		400	C20/25	1,78	44,0	

Таблица Г.2 - Расчетные сопротивления грунтов под нижним концом забивных свай и свай оболочек погружаемых без выемки грунта

	Расчётн	ые сопроти	вления	под нижни	м концом з	абивных с	вай и	свай-с	болоч	ек, по	гру-
Глубина			>	каемых без	выемки гр	унта, <i>R</i> , кГ	Та				
погружения	пе	счаных гру	нтов сре	едней плоті	ности с коэ	ффициен	том по	ристо	сти е=(0,65	
нижнего кон-	Граве- листых	крупных	_	средней крупности	мелких	пыле- ватых	_	_	_	_	_
ца сваи, м	пылева	<u>I</u> ЭТО-ГЛИНИСТ	ых, кро	I ме мореннь	ых, грунтов	при показ	і ателе	текуче	L ести <i>I_L</i>	, равн	L OM
	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
2	7100 6000	6000 3200	2500	3400 1800	1800 1300	1200 1000	900	800	600	-	-
3	<u>7500</u> 6500	6600 4000	3500	3800 2200	<u>2100</u> 1600	1300 1200	1000	900	700	-	-
4	8300 7000	6800 4800	4000	<u>4400</u> 2600	<u>2300</u> 1700	<u>1350</u> 1300	1100	1000	750	-	-
5	<u>8900</u> 7500	<u>7000</u> 6000	4400	<u>4600</u> 2800	<u>2400</u> 2000	1400 1350	1150	1050	800	-	-
6	<u>9400</u> 8100	<u>7200</u> 6500	4500	4700 3000	<u>2450</u> 2100	<u>1450</u> 1400	1200	1100	850	-	-
7	<u>9700</u> 8500	<u>7300</u> 6900	4600	4800 3200	<u>2500</u> 2200	<u>1500</u> 1450	1250	1150	900	-	-
8	<u>9900</u> 8700	<u>7550</u> 7100	4800	<u>4900</u> 3300	<u>2600</u> 2300	<u>1550</u> 1500	1280	1170	920	-	-
9	<u>10200</u> 6500	7800 7200	4900	<u>5000</u> 3400	<u>2560</u> 2350	<u>1600</u> 1550	1300	1200	940	-	-
10	<u>10500</u> 9100	7900 7350	5000	<u>5100</u> 3500	<u>2700</u> 2400	<u>1650</u> 1600	1320	1220	960	-	-
12	<u>11000</u> 9300	8200 7500	5200	<u>5200</u> 3700	<u>2800</u> 2500	<u>1750</u> 1650	1350	1250	980	-	-
15	<u>11700</u> 9500	8500 7700	5600	<u>5400</u> 4000	3000 2600	<u>1900</u> 1700	1380	1280	1000	-	-
20	<u>12600</u> 10000	8800 7800	6200	<u>5600</u> 4500	3200 2700	<u>1950</u> 1750	1400	1300	1020	-	-
25	<u>13400</u> 10500	9000 7900	6800	<u>5800</u> 4800	<u>3500</u> 2800	<u>2000</u> 1800	1450	1320	1040	-	-

Продолжение приложения Г Продолжение таблицы Г.2

Примечания

- 1 В числителе приведены значения R для песчаных грунтов, в знаменателе для пылевато-глинистых.
- 2 Глубину погружения нижнего конца сваи и среднюю глубину расположения слоя грунта в водоеме следует принимать от уровня дна после общего размыва расчетным паводком, на болотах от уровня дна болота.

При проектировании путепроводов через выемки глубиной до 6 м для свай, забиваемых молотами без подмыва или устройства лидерных скважин, глубину погружения в грунт нижнего конца сваи следует принимать от уровня природного рельефа в месте сооружения фундамента. Для выемок глубиной более 6 м глубину погружения свай следует принимать как для выемок глубиной 6 м.

- 3 Для промежуточных глубин погружения свай и промежуточных значений показателя текучести I_L пылевато-глинистых грунтов значения R и R_{fi} в таблицах 6.1 и 6.2 определяются интерполяцией.
- 4 Значения расчетных сопротивлений R допускается использовать при условии, если заглубления свай в неразмываемый и несрезаемый грунт составляют не менее, м:
- 4,0 для мостов и гидротехнических сооружений;
- 2,0 для зданий и прочих сооружений.
- 5 Для супесей при числе пластичности Ip < 4 и коэффициенте пористости e < 0.8 расчетные сопротивления грунтов R и R_{ii} следует определять как для пылеватых песков средней плотности.
- 6 Для песчаных грунтов по СТБ 943 значения *R* приведены с учетом средних значений коэффициента пористости е:
- е = 0,63 для гравелистых, крупных и средней крупности песков;
- e = 0,68 для мелких песков;
- е = 0,70 для пылеватых песков.
- 7Для песчаных грунтов средней прочности с другими значениями коэффициента пористости е значения R следует определять интерполяцией.
- 8 Для прочных песчаных грунтов по СТБ 943, прочность которых определена по данным статического зондирования, значения R для свай, погруженных без использования подмыва или лидерных скважин, следует увеличить на 80 %. При определении прочности грунта по данным других видов инженерных изысканий и отсутствии данных статического зондирования для прочных песков значения R следует увеличить на 50 %, но не более чем до 20 000 кПа.
- 9 Для забивных свай, опирающихся нижним концом на малопрочные песчаные грунты, несущую способность следует определять по результатам статических испытаний свай.

Таблица Г.3 - Расчетные сопротивления грунтов по боковой поверхности забивных

свай и свай оболочек погружаемых без выемки грунта

сваи и сваи о	Расчетные с		ения і-го сл	оя грунт	•		ерхно	сти за	абивн	ых св	ай и
Средняя							ти				
глубина	песчаных грунтов средней плотности										
расположения слоя грунта, м	гравелистых	крупных	крупности	мелких	пылеватых	_	_		_	_	_
,	ПРП	певато-гл	инистых гру	нтов пр	и показателе	текуч	ести	(I_L) pa	вном		
	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
1	<u>60</u> 45	<u>55</u> 38	<u>45</u> 35	<u>40</u> 25	<u>30</u> 15	12,0	9,0	6,0	5,0	4,0	3,0
2	<u>70</u> 55	<u>60</u> 45	<u>55</u> 42	<u>50</u> 32	<u>35</u> 22	17,0	13,0	9,0	7,5	7,0	5,0
3	<u>80</u> 60	<u>65</u> 52	<u>60</u> 48	<u>55</u> 38	<u>40</u> 28	21,0	17,0	11,0	9,0	7,5	6,0
4	<u>85</u> 65	<u>70</u> 55	<u>63</u> 53	<u>58</u> 40	<u>44</u> 32	24,0	19,0	13,0	10,0	8,0	6,5
5	90 70	<u>75</u> 60	<u>68</u> 56	<u>61</u> 43	47 34	26,0	21,0	15,0	11,0	8,5	7,0
6	<u>95</u> 72	<u>80</u> 65	<u>72</u> 60	<u>63</u> 45	<u>48</u> 35	29,0	23,0	16,0	12,0	9,0	7,5
7	<u>100</u> 75	<u>85</u> 70	<u>75</u> 63	<u>65</u> 47	<u>49</u> 36	32,0	25,0	17,0	13,0	9,5	8,0
8	102 76	<u>90</u> 73	<u>77</u> 65	<u>66</u> 48	<u>50</u> 37	33,0	26,0	17,5	13,5	10,0	8,0
9	104 72	<u>92</u> 74	<u>78</u> 66	<u>67</u> 49	<u>51</u> 38	34,0	27,0	18,0	14,0	10,5	8,0
10	<u>106</u> 78	<u>93</u> 75	<u>79</u> 67	<u>68</u> 50	<u>52</u> 39	35,0	28,0	18,5	14,5	11,0	8,0
12	<u>110</u> 80	<u>95</u> 77	<u>80</u> 68	<u>69</u> 51	<u>54</u> 40	36,0	29,0	19,0	15,0	11,0	8,0
15	<u>114</u> 82	<u>97</u> 80	<u>82</u> 70	<u>70</u> 52	<u>56</u> 41	37,0	30,0	20,5	15,0	11,0	8,0
20	<u>117</u> 85	<u>99</u> 81	<u>85</u> 75	<u>72</u> 53	<u>58</u> 42	38,0	31,0	21,0	15,0	11,0	8,0
25	<u>120</u> 90	<u>100</u> 82	<u>90</u> 80	<u>74</u> 54	<u>60</u> 44	39,0	32,0	22,0	15,0	11,0	8,0

¹ При определении расчетного сопротивления грунта на боковой поверхности сваи ($R_{\it fi}$) следует учитывать требования, изложенные в примечаниях 1, 2 и 3 к таблице Г.2.

² При определении расчетных сопротивлений грунтов на боковой поверхности свай ($R_{\it fi}$) пласты грунтов следует расчленять на однородные слои толщиной не более 2 м.

³ Значения расчетного сопротивления плотных песчаных грунтов на боковой поверхности свай (R_{fl}) следует увеличивать на 30 % по сравнению со значениями, приведенными в данной таблице.

Таблица Г.4 - Расчетные сопротивления песчаных грунтов основания под пятой буронабивных свай с уплотненным забоем

глубина	Коэффициент	Сопроти	вление (<i>R</i>), МПа	, для песчаных г	рунтов	
расположения пяты сваи, м	пористости (е)	крупных и гравелистых	средних	мелких	пылеватых	
	0,50	1,80	1,40	1,15	0,90	
4.5	0,65	1,40	1,10	0,90	0,70	
1,5	0,80	1,10	0,90	0,70	0,55	
	0,50	2,60	1,95	1,30	1,05	
2.0	0,65	2,00	1,50	1,00	0,80	
2,0	0,80	1,60	1,20	0,80	0,65	
	0,50	3,00	2,20	1,40	1,15	
2.0	0,65	2,30	1,70	1,10	0,90	
3,0	0,80	1,85	1,35	0,90	0,70	
	0,50	4,00	3,25	1,80	1,40	
5 O	0,65	3,10	2,50	1,40	1,10	
5,0	0,80	2,50	2,00	1,10	0,90	
	0,50	5,00	4,15	2,20	1,70	
7.0	0,65	3,90	3,20	1,70	1,30	
7,0	0,80	3,10	2,60	1,35	1,05	
	0,50	6,10	5,05	2,60	1,90	
0.0	0,65	4,70	3,90	2,00	1,50	
9,0	0,80	3,75	3,10	1,60	1,20	
	0,50	7,80	6,50	3,20	2,45	
12.0	0,65	6,00	5,00	2,50	1,90	
12,0	0,80	4,80	4,00	2,00	1,50	

12,0 0,80 4,80 4,00 2,00 Примечания:1 Для промежуточных глубин и е значения R определяют интерполяцией.

Таблица Г.5 - Расчетные сопротивления пылевато-глинистых грунтов основания под пятой буронабивных свай с уплотненным забоем

пятой буронабивных свай	· · · · · · · · · · · · · · · · · · ·			(5)							
глубина расположения пяты	Коэффициент	Сопр	отивлеі	` ,		-			тых		
сваи, м	пористости	грунтов(кроме моренных) при I_L									
CBan, W	(e)	≤0	0,1	0,2	0,3	0,4	0,5	0,6	0,75		
	≤0,55	1,20	1,00	0,85	0,70	0,60	0,50	0,45	0,30		
1,5	0,65	1,00	0,80	0,70	0,60	0,50	0,40	0,35	0,25		
	0,75	0,80	0,60	0,55	0,45	0,40	0,30	0,25	0,20		
	≤0,55	1,70	1,40	1,25	1,10	0,85	0,70	0,55	0,35		
2,0	0,65	1,40	1,20	1,05	0,90	0,70	0,60	0,45	0,30		
	0,75	1,10	1,00	0,85	0,70	0,55	0,45	0,35	0,25		
	≤0,55	1,90	1,70	1,40	1,20	1,00	0,85	0,65	0,50		
3,0	0,65	1,60	1,40	1,20	1,00	0,80	0,70	0,55	0,40		
	0,75	1,30	1,10	1,00	0,80	0,60	0,55	0,45	0,30		
	≤0,55	2,80	2,30	2,00	1,50	1,20	1,10	0,85	0,70		
5,0	0,65	2,40	1,90	1,70	1,25	1,00	0,90	0,70	0,60		
	0,75	2,00	1,50	1,40	1,00	0,80	0,70	0,55	0,45		
	≤0,55	3,50	2,70	2,50	2,00	1,70	1,30	1,10	0,85		
7,0	0,65	2,90	2,30	2,10	1,70	1,40	1,10	0,90	0,70		
	0,75	2,30	1,90	1,70	1,40	1,10	0,90	0,70	0,55		
	≤0,55	4,20	3,50	3,20	2,70	2,50	1,70	1,40	1,10		
10,0	0,65	3,50	2,90	2,70	2,30	2,00	1,40	1,20	0,90		
	0,75	2,80	2,30	2,10	1,90	1,70	1,10	1,00	0,70		

- 1 Для промежуточных глубин, I_L , e значения R определяются интерполяцией.
- 2 Расчетную глубину расположения нижнего конца сваи во всех случаях (в том числе и для искусственных грунтов) принимать от поверхности грунта.

² Расчетную глубину расположения нижнего конца сваи во всех случаях (в том числе и для искусственных грунтов) необходимо принимать от поверхности грунта.

Таблица Г.6 - Расчетные сопротивления песчаных грунтов основания по боковой поверхности буронабивных свай с уплотненным забоем

Расстояние от расчетной поверхно-				, для песчаных	грунтов
сти до середины слоя, м	Коэфф. пори- стости (<i>e</i>)	крупных и гравелистых	средних	мелких	пылеватых
	0,50	45	39	26	19
0,5	0,65	35	30	20	15
0,5	0,80	31	24	16	12
	0,50	52	45	32	30
1.0	0,65	40	35	25	23
1,0	0,80	32	31	20	18
	0,50	55	49	39	32
1.5	0,65	42	38	30	25
1,5	0,80	34	30	24	20
	0,50	58	55	41	36
2.0	0,65	45	42	32	28
2,0	0,80	36	34	26	22
	0,50	65	62	45	39
3.0	0,65	50	48	35	30
3,0	0,80	40	38	31	24
	0,50	78	73	52	44
5,0	0,65	60	56	40	34
3,0	0,80	48	45	32	27
	0,50	84	80	57	46
8,0	0,65	65	62	44	36
0,0	0,80	52	50	35	29
	0,50	93	88	65	51
11,0	0,65	72	68	50	39
11,0	0,80	58	55	40	31

Примечания:

- 1 Для промежуточных глубин и коэффициента пористости R_{ii} определяется интерполяцией.
- 2 Расстояние до середины рассматриваемого слоя грунта во всех случаях принимать от верха сваи (фундамента) в уровне отметки забивки.
- 3 При определении $R_{\it fit}$ пласты грунтов следует разделять на однородные слои толщиной до 2 м.

Таблица Г.7 - Расчетные сопротивления пылевато-глинистых грунтов основания по боковой поверхности буронабивных свай с уплотненным забоем

Расстояние от расчетной по- верхности грунта до середины	Сопротивление ($R_{\it fi}$), кПа, для пылевато-глинистых грунтов (кроме моренных) с показателем текучести ($\it I_L$)								
рассматриваемого слоя, м	≤0	0,1	0,2	0,3	0,4	0,5	0,6	0,75	
0,5	40	35	30	20	12	9	6	4,5	
1,0	45	38	35	25	15	12	9	5	
2,0	55	45	42	32	22	17	13	9	
3,0	60	50	48	38	28	21	17	13	
4,0	65	55	53	40	32	24	19	15	
5,0	70	60	56	43	36	26	21	17	
7,0	74	64	60	47	40	30	25	20	
9,0	78	68	64	51	44	32	27	22	

- 1 Для промежуточных глубин и показателя текучести значения ($R_{\it fi}$) определяются интерполяцией.
- 2 Для прочных супесей, суглинков и глин значения (R_{ij}) увеличиваются на 20 %.
- 3 При определении R_{fi} пласты грунтов следует разделять на однородные слои толщиной до 2 м.

Таблица Г.8 - Удельные сопротивления грунтов под нижним концом и средние значения удельных сопротивлений грунтов на боковой поверхности забивных свай поданным динамического зондирования

	Удельное сопр нижним кон	отивление цом забивн	грунта і-го слоя под ой сваи (q_{di}), МПа	Среднее значение удельного сопротивления грунта і-го слоя на боковой поверхности забивной сваи (\bar{f}_{di}), 10^{-2} МПа				
P _d M∏a	для песчаных грунтов есте- ственного сложения и намывных с давностью намыва более 0,5 года	для мо- ренных глинистых грунтов	для пылевато- глинистых грунтов (кроме моренных) неводонасыщенных	для песчаных грунтов есте- ственного сложения и намывных с давностью намыва более 0,5 года	для морен- ных глини- стых грунтов	для пылевато- глинистых грунтов (кроме моренных) неводонасыщенных		
≤1	0,95	0,65	0,59	0,58	2,82	2,34		
2	1,70	1,15	1,04	1,11	4,75	3,80		
3	2,40	1,60	1,44	1,60	5,00	3,95		
5	3,55	2,25	2,02	2,46	5,50	4,20		
8	4,80	2,95	2,65	3,54	5,75	4,30		
10	5,42	3,20	2,90	4,13	6,00	4,40		
12	6,10	3,40	3,06	4,64	6,20	4,50		
≥ 17,5	6,40	4,00	3,60	5,63	6,50	4,60		

Примечания

Таблица Г.9 – Удельные сопротивления грунтов под нижним концом и средние значения удельных сопротивлений грунта на боковой поверхности буронабивных свай с уплотненным забоем по данным динамического зондирования

(p _d)	Удельное о под нижни	сопротивление им концом наб МПа	е грунта і-го слоя ивных свай ($q_{\it di}$),	Среднее значение удельного сопротивления грунта i-го слоя на боковой поверхности набивных свай (\bar{f}_{di}), 10 ⁻² МПа				
(<i>p_d</i>) M∏a	для песча- ных грун- тов	для морен- ных глини- стых грунтов	для пылевато- глинистых грун- тов, кроме мо- ренных	для песчаных грунтов	для моренных глинистых грунтов	для пылевато- глинистых грунтов, кроме моренных		
1	0,90	0,60	0,50	0,53	2,80	2,10		
2	1,63	1,00	0,80	1,00	4,20	3,20		
3	2,20	1,40	1,10	1,42	4,50	3,46		
5	3,20	2,20	1,70	2,10	4,90	3,76		
8	4,40	2,60	2,10	3,20	5,20	4,00		
10	4,90	2,90	2,40	3,72	5,45	4,20		
12	5,50	3,10	2,60	4,10	5,60	4,30		
≥ 18,0	6,00	3,60	2,90	5,10	6,00	4,60		

- 1 При значениях p_d > 18 МПа величины (q_{di}) и (\bar{f}_{di}) принимают равными их максимальным значениям, указанным в таблице.
- 2 Значения (q_{di}) и (\bar{f}_{di}) по таблице следует определять для однородных слоев с изменениями (p_d) не более, чем на 20%.
- 3 При промежуточных значениях (p_{d}) величины (q_{di}) и (\bar{f}_{di}) определяют интерполяцией.
- 4 Пылеватые водонасыщенные пески и водонасыщенные лессовидные супеси и суглинки не нормируются.

¹ Значения (q_{di}) и (\bar{f}_{di}) следует определять для однородных слоев грунта с разницей значений P_d не более 20%.

^{2.} Для пылеватых водонасыщенных песков показатели удельного сопротивления по результатам динамического зондирования грунтов не нормируются.

Таблица Г.10 - Коэффициенты перехода от $\left(\overline{q}_{si}\right)$ $\kappa\left(\overline{R}_{fs}\right)$ и от $\left(\overline{f}_{si}\right)$ к $\left(\overline{R}_{fs}\right)$ при расчете

предельного сопротивления забивной сваи по данным статического зондирования

\overline{q}_{si} ,	Значение коэффициента перехода $oldsymbol{eta}_{1i}$ в зависимости от \overline{q}_{si}			$ar{R}_{ extit{fs}}$,	хода β _{2i} (иент пере- от \overline{R}_{fs} к \overline{R}_{s} да типа I		е коэффици сти от $ar{f}_{si}$ д и III типов	ля зондов II
МПа	при пес- чаных грунтах	при мо- ренных глинистых грунтах	при пыле- вато- глинистых, кроме мо- ренных	\overline{f}_{si} , МПа	при пес- чаных грунтах	при пыле- вато- глинистых, кроме мо- ренных	при пес- чаных грунтах	при мо- ренных глинистых грунтах	при пыле- вато- глинистых, кроме мо- ренных
1	1,27	1,17	1,01	0,01	_	_	0,90	1,57	1,31
2	1,13	1,01	0,80	0,02	2,40	1,50	0,76	1,33	1,03
3	0,98	0,87	0,68	0,03	2,25	1,37	0,68	1,14	0,86
5	0,82	0,66	0,52	0,04	1,65	1,00	0,60	0,98	0,75
8	0,66	0,47	0,38	0,05	1,53	0,94	0,57	0,90	0,66
10	0,59	0,39	0,33	0,06	1,20	0,75	0,55	0,82	0,60
12	0,53	0,37	0,28	0,08	1,00	0,60	0,48	0,68	0,47
20	0,38	0,30	0,22	0,10	0,85	0,50	0,44	0,58	0,40
30	0,27	_	_	0,12	0,75	0,40	0,40	0,55	0,32
	_	_	_	0,20	_	_	0,30	0,50	0,28

Таблица Г.11 - Коэффициенты перехода от $\left(\overline{q}_{si}\right)$ $\kappa\left(\overline{R}_{s}\right)$ и от $\left(\overline{f}_{si}\right)$ к $\left(\overline{R}_{fs}\right)$ при расчете предельного сопротивления буронабивной сваи с упрочненным забоем по данным статического зондирования

	Значение коз	ффициента (В	3 _{1 і}) в зависимо-		Значение коэ	ффициента (β ₂	_i) в зависимо-
_		сти от ($\overline{q}_{\it si}$)		<u>-</u>		сти от $\left(ar{f}_{si} ight)$	
\overline{q}_{si} , МПа	при песча- ных грунтах	при морен- ных глини- стых грунтах	при пылева- то-глинистых, кроме морен- ных	$f_{\it si}$, M∏a	при песчаных грунтах	при морен- ных глини- стых грунтах	при пылева- то-глинистых, кроме морен- ных
1	0,56	0,50	0,45	0,01	0,80	1,30	1,10
2	0,49	0,43	0,39	0,02	0,68	1,20	1,00
3	0,45	0,39	0,35	0,03	0,59	1,00	0,86
5	0,39	0,34	0,30	0,04	0,55	0,80	0,75
8	0,35	0,28	0,25	0,05	0,47	0,78	0,68
10	0,29	0,24	0,21	0,06	0,43	0,68	0,60
12	0,25	0,20	0,19	0,08	0,38	0,56	0,47
20	0,18	0,14	_	0,10	0,34	0,50	0,40
				0,12	0,30	0,46	0,35
				0,20	0,25	0,40	0,30

Примечания к таблицам Г.10 и Г.11

¹ При значениях (\overline{q}_{si}) и (\overline{f}_{si}) превышающих указанные в таблице, эти величины принимаются равными их максимальным значениям указанным в таблице.

² При промежуточных значениях (\overline{q}_{si}) и (f_{si}) коэффициенты определяют интерполяцией.

Таблица Г.12 – Прочностные характеристики тяжелых бетонов

Характеристики, единицы из-	Класс бетона по прочности на сжатие								
мерения	C8/10	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45		
fck, нормативное сопротивле- ние бетона осевому сжатию, МПа	8	12	16	20	25	30	35		
fcd, расчетное сопротивление бетона сжатию для ж/б кон- струкций, МПа	5,3	8	10,7	13,3	16,7	20	23,3		

Таблица Г.13 – Характеристики арматуры

Класс арматуры	Номинальный диаметр, мм	Расчетное сопротивление, fyd, H/мм2 (МПа)	Нормативное сопро- тивление, fyk, H/мм2 (МПа)
S240	5,540,0	218	240
S400	6,040,0	365	400
S500	3,040,0	450	500

Таблица Г.14 – Сортамент стержневой арматуры

Диа-		F	Расчетны	е площад	и попере	чного сеч	ения, см2	<u>)</u> ,		Macca,
метр,				при ч	исле стер	жней				імасса, кг/м
MM	1	2	3	4	5	6	7	8	9	KI / IVI
6	0,293	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54	0,222
8	0,503	1,01	1,51	2,01	2,51	3,01	3,52	4,02	4,53	0,395
10	0,785	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	0,617
12	1,131	2,26	3,39	4,52	5,65	6,79	7,92	9,05	10,18	0,888
14	1,539	3,08	4,62	6,16	7,69	9,23	10,77	12,31	13,85	1,208
16	2,011	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,10	1,578
18	2,545	5,09	7,63	10,18	12,72	15,27	17,81	20,36	22,90	1,998
20	3,142	6,28	9,42	12,56	15,71	18,85	21,99	25,13	28,27	2,466
22	3,801	7,60	11,40	15,20	19,00	22,91	26,61	30,41	34,21	2,984
25	4,909	9,82	14,73	19,63	25,54	29,45	34,36	39,27	44,18	3,840

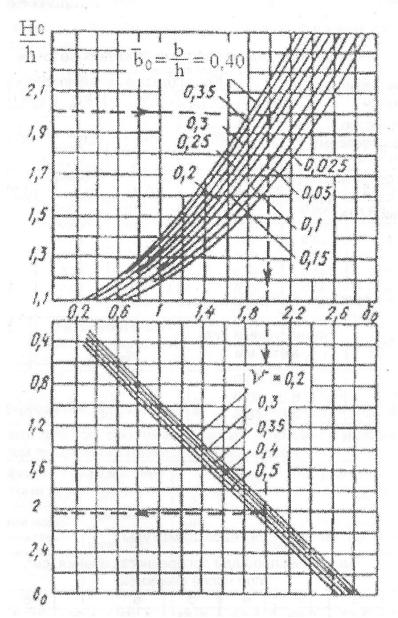


Рисунок Г.1 — Номограмма для определения значений (δο).

Значения коэффициента (бо) определяются по номограмме на рисунке Г.1 следующим образом. На номограмме через точку, соответствующую вычисленному значению приведенной глубины сжимаемой толщи, проводится прямая, параллельная оси абсцисс, до пересечения с линией приведенной ширины фундамента (b0) и опускается перпендикуляр до линии коэффициента Пуассона грунта (v). Из точки пересечения проводится линия, параллельная оси абсцисс, до пересечения с осью ординат, на которой приведены значения коэффициента (бо).

Таблица Г.15 – Расчетная энергия удара молота

Молот	Расчетная энергия удара молота				
1. Подвесной или одиночного действия	GHm				
2. Трубчатый дизель-молот	0,9 GHm				
3. Штанговый дизель-молот	0,4 GHm				
4. Дизельный при контрольной добивке одиночными ударами	·				
без подачи топлива	G(Hm – h1)				

Таблица Г.16 – Технические характеристики дизель-молотов

Тип дизель молотов	Вес ударной части молота (G), кН	Полный вес молота, (Gn), кН	Площадь ци- линдра (Ац), м2	Рабочий ход цилиндра (Нр), м	Наибольшая высота паде- ния ударной части молота (Hm), м
C-254 C-222 C-268 C-330	6 12 18 25	11 23 31 42	0,1314 0,0491 0,066 0,08	0,38 0,48 0,515 0,5	1,77 1,79 2,1 2,6
C-994 C-857	6	15	0,0434	0,28	3
C-995 C-858	12	26	0,0705	0,32	3
C-996 C-859	18	36,5	0,093	0,37	3
C-1047 C-949	25	55	0,126	0,37	3
C-1048 C-954	35	76	0,174	0,375	3
C-1054 C-974	50	101	0,237	0,42	3
Ур-500 Ур-1250	5 12,5	10 25	0,9346 0,0705	0,27 0,3	2,27 3,31

Таблица Д.1 – Укрупненные единичные расценки на земляные работы, устройство фундаментов и искусственных оснований

Наименование работ и конструкций	Стоимость на единицу измерения, руб.коп.
1	2
А. Земляные работы	
I. Разработка грунта под фундаменты:	
при глубине выработки до 2 м и ширине траншеи 1 м, м ³	3-60
при глубине котлована более 2 м на каждые 0,5 м глу-	
бины заложения фундаментов стоимость земляных работ	
увеличится на 10% (при уменьшении глубины стоимость	
соответственно уменьшится)	
при ширине котлована более 1 м стоимость земляных	
работ повышается на 7%	
при разработке мокрых грунтов вводятся поправочные	
коэффициенты:	
при объеме мокрого грунта (ниже уровня подземных	
вод) менее 50% от общего объема грунта $K_A = 1,25$	
при объеме мокрого грунта (ниже УПВ) более 50% от	
общего объема грунта К _д =1,4 II. Водоотлив на 1 м ³ грунта:	
при отношении мокрого грунта (ниже УПВ) к глубине	
при отношении мокрого грунта (ниже эттв) к тлуоине котлована:	
до 0,25	0-35
до 0,5	0-95
до 0,75	1-80
свыше 0,75	3-00
III. Крепления:	
крепление стенок котлована досками:	
при глубине выработки до 3 м, м ² крепления	0-85
при глубине выработки более 3 м , м ² крепления	0-98
устройство деревянного шпунтового ограждения, м ²	7-86
ограждения	
Б. Устройство фундаментов	
І. Сборные фундаменты:	
фундаменты железобетонные сборные для промыш-	
ленных зданий, м ³ железобетона	44-90
трапецеидальные блоки ленточных фундаментов, м ³	
железобетона	46-50
бетонные фундаментные блоки (в том числе стеновые),	00.00
м ³ бетона	36-00
II. Монолитные фундаменты:	
фундаменты железобетонные отдельные (под колонны), м ³ железобетона	21.00
то же, ленточные, м ³ железобетона	31-00 28-30
	28-30 28-40
фундаменты бетонные, отдельные, м ³ бетона то же, непрерывные (ленточные), м ³ бетона	26-40 26-30
то же, пепрерывные (пенточные), м остона	20-30

Продолжение приложения Д Продолжение таблицы Д.1

Таблица Е.1 - Номенклатура фундаментных плит

	Размеры		Объем	Macca			
Марка	b,	L,	h,	бетона, м ³	изделия,	петель, кг	
	MM	MM	MM	M	T	замкнутых	открытых
ФЛ6.24	000	2380	000	0,37	0,93	0,86	1,18
ФЛ6.12	600	1180	300	0,18	0,45	0,44	0,76
ФЛ8.24	000	2380		0,46	1,15	0,86	1,18
ФЛ8.12	800	1180		0,22	0,55	0,86	1,18
ФЛ10.30		2980		0,69	1,75	1,26	2,36
ФЛ10.24	1000	2380		0,55	1,38	1,26	2,36
ФЛ10.12	1000	1180		0,26	0,65	0,86	1,18
ФЛ10.8		780		0,17	0,42	0,44	0,76
ФЛ12.30		2980		0,82	2,05	1,76	-
ФЛ12.24	1200	2380		0,65	1,63	1,26	2,36
ФЛ12.12	1200	1180	300	0,31	0,78	0,86	1,18
ФЛ12.8		780	300	0,2	0,5	0,44	0,76
ФЛ14.30	1400	2980		0,96	2,4	1,76	-
ФЛ14.24		2380		0,76	1,9	1,26	2,36
ФЛ14.12		1180		0,36	0,91	0,86	1,18
ФЛ14.8		780		0,23	1,58	0,86	1,18
ФЛ16.30		2980		1,09	2,71	1,76	-
ФЛ16.24	1600	2380		0,86	2,15	1,76	-
ФЛ16.12	1000	1180		0,41	1,03	0,86	1,18
ФЛ16.8		780		0,26	0,65	0,86	1,18
ФЛ20.30		2980		2,04	5,10	5,56	8,8
ФЛ20.24	2000	2380		1,62	4,05	5,56	8,8
ФЛ20.12	2000	1180		0,78	1,95	1,26	2,48
ФЛ20.8		780		0,5	1,25	0,86	1,72
ФЛ24.30		2980		2,39	5,98	5,56	8,8
ФЛ24.24	2400	2380		1,90	4,75	5,56	8,8
ФЛ24.12	2400	1180	500	0,91	2,30	1,76	3,38
ФЛ24.8		780		0,58	1,45	1,26	2,48
ФЛ28.24		2380		2,36	5,90	5,56	8,8
ФЛ28.12	2800	1180		1,13	2,82	2,78	4,4
ФЛ28.8		780		0,72	1,80	1,26	2,48
ФЛ32.12	3200	1180		1,29	3,23	2,78	4,4
ФЛ32.8	3200	780		0,82	2,05	1,26	2,48

Таблица Е.2 - Номенклатура блоков стен подвалов типа ФБС

	Объём	Класс	Magaz	Dooyon			
Марка		тные разме		1		Macca	Расход
блока	длина	ширина	высота	бетона	бетона	изде-	метал-
	L	В	Н	M ³	(марка)	лия, кг	ла, кг
ФБС 24.3.6		300		0,406		970	1,46
ФБС 24.4.6	0000	400	500	0,543		1300	1,46
ФБС 24.5.6	2380	500	580	0,679		1630	2,36
ФБС 24.6.6		600		0,815		1960	2,36
				0,0.0			2,00
ФБС 12.2.6		200		0,133		320	0,76
ФБС 12.3.6		300		0,203		485	0,76
ФБС 12.4.6	1180	400	580	0,265		640	1,46
ФБС 12.5.6		500		0,331		790	1,46
ФБС 12.6.6		600		0,398		960	1,46
ΨBO 12.0.0		000		0,000		300	1,40
ФБС 12.2.3		200		0,066	$C^{8}/_{10}$	160	0,38
ФБС 12.3.3		300		0,1		240	0,38
ФБС 12.4.3	1180	400	280	0,127		310	0,74
ФБС 12.5.3	1100	500	200	0,127		380	0,74
ФБС 12.6.3		600		0,139		460	,
ΨΒΟ 12.0.3		000		0,191		400	0,74
ФБС 9.2.6		600		0,098		235	0,36
ФБС 9.2.6		300		0,096		350	,
	000		E00				0,76
ФБС 9.4.6	880	400	580	0,195		470	0,76
ФБС 9.5.6		500		0,244		590	0,76
ФБС 9.6.6		600		0,293		700	1,46
	1	l	1	l		1	

Примечание:

. Номинальная масса приведена для блоков из тяжелого бетона с объёмной массой 2400 кг/м 3 .

Таблица Е.3 – Номенклатура фундаментных балок

Manua		Deeve for way	Dec. all
Марка	Длина, мм	Расход бетона, м ³	Вес, кН
1БФ60-12	5950	0,32	8,0
1БФ55-34	5500	0,30	7,5
1БФ51-56	5050	0,27	6,8
1БФ48-78	4750	0,25	6,3
1БФ45-910	4450	0,24	6,0
1БФ43-1112	4300	0,23	5,8
1БФ40-1314	4000	0,21	5,3
2БФ60-15	5950	0,40	10,0
2БФ55-69	5500	0,37	9,2
2БФ51-1014	5050	0,34	8,5
2БФ48-1520	4750	0,32	8,0
2БФ45-2126	4450	0,30	7,5
2БФ43-2731	4300	0,29	7,2
2БФ40-3236	4000	0,27	6,7
3БФ60-15	5950	0,52	13,0
3БФ55-610	5500	0,48	12,0
3БФ51-1115	5050	0,44	11,0
3БФ48-1621	4750	0,41	10,0
3БФ45-2227	4450	0,39	9,70
3БФ43-2833	4300	0,37	9,30
3БФ40-3439	4000	0,35	8,70
4БФ60-15	5950	0,60	15,0
4БФ55-68	5500	0,55	14,0
4БФ51-913	5050	0,51	13,0
4БФ48-1417	4750	0,48	12,0
4БФ45-1821	4450	0,45	11,0
4БФ43-2225	4300	0,43	11,0
4БФ40-2629	4000	0,40	10,0
1БФ120-13	11950	1,0	25,0
1БФ111-46	11050	0,93	23,0
1БФ108-79	10750	0,90	23,0
1БФ105-1012	10450	0,88	22,0
1БФ103-1315	10300	0,87	22,0
2БФ120-13	11950	2,30	57,0
2БФ111-46	11050	2,12	53,0
2БФ108-79	10750	2,06	52,0
2БФ105-1012	10450	2,00	50,0
2БФ103-1315	10300	1,98	50,0

ЛИТЕРАТУРА

- 1. Стандарт университета. Оформление материалов курсовых и дипломных проектов (работ), отчетов по практике. Общие требования и правила оформления. СТ БГТУ-01-2002.- Брест, 2002.-32с.
- 2. Стандарт Республики Беларусь. Грунты, классификация. СТБ 943-2007. Мн.: Министерство архитектуры и строительства РБ, 2007.
- 3. Строительные нормы Республики Беларусь. СНБ 2.04.02 2000. Строительная климатология. Минск: Стройтехнорм, 2000, 40с.
- 4. ТКП 45 5.01 254 2012 (02250). Основания и фундаменты зданий и сооружений. Основные положения. Строительные нормы проектирования. 2012г.
- 5. П2-2000 к СНБ 5.01.01-99. Проектирование забивных и набивных свай по результатам зондирования грунтов. Минск, 2001.
- 6. ТКП 45 5.01 256 2012 (02250). Основания и фундаменты зданий и сооружений. Сваи забивные. Правила проектирования и устройства. 2012г.
- 7. П9-2000 к СНБ 5.01.01-99. Проектирование оснований и фундаментов в пучинистых при промерзании грунтах. Минск, 2001.
- 8. П13-01 к СНБ 5.01.01-99. Проектирование и устройство буронабивных свай. Минск, 2002.
- 9. ТКП 45-5.01-67-2007. Фундаменты плитные. Правила проектирования. Минск, 2007.
- 10. Далматов Б.И. Механика грунтов, основания и фундаменты. М; Стройиздат, 1981. -319с.
- 11. Далматов Б.И., Морарескул Н.Н., Науменко В.Г. Проектирование фундаментов
 - зданий и промышленных сооружений. М: Высшая школа, 1986. 239с.
- 12. Лапшин Ф.К. Основания и фундаменты в дипломном проектировании. Саратов, 1986.-224c.
- 13. Методические указания к курсовой работе по дисциплине «Механика грунтов, основания и фундаменты» для студентов специальности 1-70 04 03 «Водоснабжение, водоотведение и охрана водных ресурсов». Брест, 2008. 55 с.
- 14. Пособие по проектированию оснований зданий и сооружений. М.: Стройиздат, 1986.-415c.
- 15. Основания, фундаменты и подземные сооружения (М.И. Горбунов-Посадов, В.А. Ильичев, В.И. Крутов и др.) - М.; Стройиздат, 1985. -480c.
- 16. Руководство по проектированию свайных фундаментов (НИЙОСП имени Н.М.Герсеванова). М.; Стройиздат, 1980, 150с.