МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОССУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

(инструкция пользователя)

по проектированию центрально - нагруженных стальных ьзованием ИВК «*SHUMAX*» по дисциплине «*METAЛЛИЧЕ*стержней с испол*СКИЕ КОНСТРУКЦИИ*» для практических занятий, курсового и дипломного проектирования

Для студентов специальности «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО» (70 02 01) очной и заочной форм обучения

УДК 624.014 (07)

Данная «Инструкция» Содержит указания по использованию ИВК «Shumax», предназначенного для подбора сечений сплошного сечения из прокатных и холодногнутых профилей, а также некоторые теоретические сведения по подбору сечений центрально – нагруженных стержней.

Методические указания разработаны в соответствии с программой курса «Металлические конструкции» для студентов специальности «Промышленное и гражданское строительство» (70 02 01) очной и заочной форм обучения для использования в курсовом и дипломном проектировании.

Составители: Шурин А.Б., ассистент, Мухин А.В., профессор, к.т.н.

Рецензент: Шикасюк Н.С., директор ОДО НПП Брест-КАД

Учреждение образования

© Брестский государственный технический университет, 2002 г.

введение

Автоматизированная система подбора центрально - нагруженных стальных стержней *SHUMAX* разработана на кафедре строительных конструкций Брестского государственного технического университета (БГТУ) в 2000 году. Разработанная авторами структура информационно – вычислительного комплекса (ИВК) позволяет существенно сократить время на обучение, сконцентрировать внимание учащихся на методике расчета и самой сути проектирования.

Цель ИВК SHUMAX - это научить студентов использовать нормативные материалы при расчете стальных конструкций. В виду того, что сам процесс проектирования стальных ферм, структур, оболочек в большей части состоит из однообразной работы по подбору самих сечений стержней, из которых и состоят эти конструкции, то программа позволяет сократить временные затраты при их подборе.

Центрально нагруженные продольными силами стальные конструкции входят в состав стержневых конструкций: стропильных и связевых ферм, опор эстакад, галерей, колонн, стоек и т.д.

Стержнем принято считать элемент, у которого длина в 5 и более раз превосходит наибольший поперечный размер его сечения.

Стержни, работающие на растяжение, рассчитывают на прочность, без учета ослабления отверстиями по длине, и на предельную гибкость.

Сжатые элементы рассчитывают на общую устойчивость и предельную гибкость. Местная устойчивость элементов сечений не рассматривается. Также в программе не проверяется изгибно-крутильная форма потери устойчивости для тонкостенных сжатых стержней.

В предлагаемой программе сечение стержней и их проверка выполняется по методике предельных состояний, которая регламентируется ИСО 2394-1986 «Общие принципы проверки надежности конструкций», стандартом СЭВ 384-87 «Надежность строительных конструкций и оснований. Основные положения расчета», СНиП 2.01.07-85 «Нагрузки и воздействия». Расчет стержней выполняется по первой группе предельных состояний, после наступления которой он становится непригодным к эксплуатации. Проектирование стержней выполняется в соответствии с требованиями СНиП II-23-81^{*} «Стальные конструкции».

Достоинством ИВК является наглядность на экране всех нормативных документов и материалов, а также наличие блока обучения. Программа может работать как в обучающем режиме, так и в автоматизированном, осуществляющем перебор всех типоразмеров стержней по заданному предварительно типу сечения. При работе в обучающем режиме расчет ведется в форме диалога с пользователем. При неправильном шаге или возникновении ошибки выдаются рекомендации о дальнейшем шаге.

В программу встроена обширная база данных по сортаменту, выпускаемому в странах СНГ, который постоянно пополняется. На данный момент ИВК позволяет подобрать сечения стержней из:

- равнополочных уголков по ГОСТ 8509-93;
- неравнополочных уголков по ГОСТ 8510-86*;
- балочных, широкополочных и колонных тавров по ГОСТ 26020-83;
- электросварных прямошовных труб по ГОСТ 10704-76*;
- профилей гнутых, замкнутых сварных квадратных и прямоугольных по ТУ 36-2287-80.

Рассматриваются стержни из фасонных и холодногнутых профилей, выполненные из сталей по ГОСТ 27772-88: C235, C245, C255, C275, C285, C345, C345K, C375, C390, C390K, C440, C590, C590K.

ИВК *SHUMAX* прошел тестирование и используется в процессе обучения на кафедре строительных конструкций БГТУ.

Программа функционирует под OS Windows 9x/ME/NT/2000. Для работы необходимо наличие 3 Мб свободного места на жестком диске.

Примечание:

Для работы программы необходимо, чтобы в системе в качестве разделителя целой и дробной частей числа была установлена точка.

Если при запуске программы появилось окно, представленное на рисунке 1, выполните действия указанные в нем:

Внимание!	1
В операционной системе в качестве разделителя целой и дробной части числа установлена запятая. Для нормальной работы прог- раммы проделайте пожалуйста следующие действия.	
1. Откройте панель управления	
2. В панели управления запустите "Язык и стандарты"	
 В закладке "Числа" в качестве разделителя целой и дробной частей числа установите точку и нажмите клавишу <ok>.</ok> 	
4. Запустите программу заново.	
CK OK	

Рис. 1.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ РАСЧЕТА

Исходными данными при проектировании являются:

- 1. Расчетная схема стержня, которая включает расчетное значение продольной силы N (κH); расчетные длины стержня: $\mu_x \cdot l_x$, $\mu_y \cdot l_y$, где μ_x , μ_y коэффициенты приведения геометрической длины к расчетной; l_x , l_y длины стержня между опорами;
- 2. Вид сечения стержня из библиотеки сечений;
- **3.** Класс стали по ГОСТ 27772-88.

1.1. Расчет центрально-растянутых элементов

Расчет растянутых элементов выполняется по алгоритму, приведенному в таблице 1.

Таблица	1
---------	---

N⁰	Название	Растяжение	Сжатие
1	2	3	4
1	Расчетная длина стержня	$l_x = l \cdot \mu_x; \qquad l_y = l$	$\cdot \mu_y$
2	Определение требуемой пло- щади сечения	$A_{TP} = \frac{N \cdot \gamma_n}{R_y \cdot \gamma_c}$	$A_{TP} = \frac{N \cdot \gamma_n}{R_y \cdot \gamma_c \cdot \varphi}$
3	Гибкость стержня	$\lambda_x = \frac{l_x}{i_x}; \qquad \lambda_y = \frac{l_y}{i_y}$	
4	Условие прочности и устойчи- вости	$\sigma = \frac{N \cdot \gamma_n}{A} \le R_y \cdot \gamma_c$	$\sigma = \frac{N \cdot \gamma_n}{\varphi \cdot A} \le R_y \cdot \gamma_c$
5	Проверка по гибкости	$\lambda_{\max} \leq \lambda_U$	

N - расчетная продольная сила, принимаемая в соответствии с таблицей расчетных комбинаций нагрузок по результатам статического расчета строительных конструкций (шаг 3).

Коэффициент условий работы γ_c (шаг 4) - принимается по таблице 6 [1]; в зависимости от назначения элемента учитывает:

- факторы, которые не учитываются прямым путем, или их учет является сложной задачей;
- случайное отклонение от расчетной схемы элемента или конструкции, имеющего нелинейную работу и ползучесть материала;
- степень повреждаемости при транспортировании, монтаже и эксплуатации;
- коррозию и биологические воздействия.

Коэффициент надежности по назначению γ_n (**шаг 4**) - принимается в зависимости от класса ответственности зданий и сооружений при сборе нагрузок в соответствии с приказом №9 ГОССТРОЯ РБ от 30.10.1992 г [приложение 1].

При проектировании стержней в программе необходимо принять $A_n = A$, то есть ослабления отверстиями по длине стержня не учитываются. Предел текучести стали R_y (шаг 4) принимается по таблице 51 [2] в зависимости от класса стали, толщины и вида проката.

Для растянутых элементов должны выполняться требования предельной гибкости, которые обоснованы практикой такелажно-монтажных операций, практикой монтажа и эксплуатации.

Величины предельных гибкостей $\overline{\lambda}_{u}$ регламентируются табл. 20 [1] (шаг 5).

Для горизонтальных и наклонных элементов с проекцией длины на горизонтальную плоскость менее 8 м эти требования гарантируют их нормальную эксплуатацию. При длинах этой проекции более 8м следует проверить, чтобы их прогиб под действием собственного веса был менее $\frac{1}{500}$ для растянутых основных элементов конструкций, $\frac{1}{200}$ для растянутых элементов связей при наличии динамики, $\frac{1}{150}$ для прочих растянутых элементов связей. Все это справедливо при отсутствии предварительного напряжения растянутых элементов.

1.2. Расчет центрально-сжатых сплошностенчатых элементов

Расчет на общую устойчивость выполняется по алгоритму, приведенному в таблице 1, где:

- значения коэффициента продольного изгиба φ определяются по формулам таблицы 2, в которых он зависит от гибкости стержня λ и предела текучести стали R_y , формы сечения стержня, диаграммы деформирования стали в координатах $\overline{\sigma} = \frac{\sigma}{R_y}$, $\overline{\varepsilon} = \frac{\varepsilon \cdot E}{R_y}$, начального прогиба стержня $\overline{\lambda} = \frac{1}{750}$.

Величины придельных гибкостей сжатых элементов регламентируется табл.20 [2].

Для наклонных и горизонтальных сжатых элементов при длине их горизонтальных проекций более 8 м следует убедиться, что их прогиб от действием собственного веса для основных элементов не превышал $\frac{1}{750}$, а для связевых и второстепенных - $\frac{1}{200}$.

Определение коэффициента продольного изгиба φ

Таблица 2.

Предельная гибкость $\overline{\lambda} = \lambda \cdot \sqrt{\frac{R_y}{E}}$	Коэффициент φ
$\overline{\lambda} \le 2.5$	$\varphi = 1 - 0,666 \cdot \overline{\lambda} / \lambda$
$2.5 < \overline{\lambda} \le 4.5$	$\varphi = 1.46 - 0.4 \cdot \overline{\lambda} + 0.021 \cdot \overline{\lambda}^2$
$\overline{\lambda} > 4.5$	$\varphi = 332 / \left[\overline{\lambda}^2 \cdot (5 - \lambda) \right]$

1.3. Определение коэффициентов приведения расчетных длин $\,\mu$

Сечения стержней имеют различные моменты инерции относительно произвольно выбираемых осей. Как правило, рассматриваемые в программе сечения, имеют одну или две оси симметрии, которые и являются главными. Эти направления являются экстремальными, поэтому расчет осуществляется для форм потери устойчивости относительно главных осей. Прочие формы потери устойчивости в промежуточных плоскостях не рассматриваются. Проверка выполняется на выбранную форму потери общей устойчивости, которые определяются своими расчетными длинами и, соответственно, коэффициентами приведения расчетных длин *µ*.

Расчетную длину *l*_{ef} элементов плоских ферм принимают:

- в плоскости фермы для поясов и опорных раскосов и стоек равной расстоянию между центрами узлов l ($l_{ef} = l$), а для прочих элементов $l_{ef} = 0.8 \cdot l$;
- в направлении из плоскости фермы для всех элементов равной расстоянию l₁ между узлами, закрепленными от смещения из плоскости фермы (для поясов это расстояние между точками закрепления горизонтальных связей или точками приварки жестких плит покрытия, т.е. l_{ef} = l₁; для элементов решетки – расстояния между центрами узлов, или l_{ef} = l).

2. ПОРЯДОК РАБОТЫ С ПРОГРАММОЙ

Шаг 1. Запуск программы

Для запуска ИВК "Shumax" два раза щелкните мышью по значку с изображением сечения стержня из двух уголков (рис.2.1)

и попадете прямо в главное окно программы (рис.2.2).

Главное		
меню про-		
Полбор сечений центрально-насруженных стальных элементов		
Файл Подбор Исходные даные Сортамент ?		Выход
	ИЗ	про-
Панель		
инструментов		
Andrei Shuryn 01/02/2002 Home Computing Laboratory τ, (0	162) 24-34-5	5 //.

Рис.2.2. Главное окно ИВК «Shumax»

В самом верху расположено главное меню программы, с помощью которого пользователь может выполнять все необходимые действия шаг за шагом. Для ускорения доступа к режимам под главным меню расположена панель инструментов (рис.2.3).

Рис. 2.3. Панель инструментов

Шаг 2. Начало расчета

Для начала расчета необходимо нажать на кнопку - в случае пошагового подбора, и на кнопку - в случае автоматического подбора сечений стержней. Перед вами автоматически появится окно "Паспорт" (рис.2.4), где можно: выбрать расположение директории, куда будут записываться файлы с результатами (нажмите на кнопку **b** в строке путь); ввести имя файла с результатами (строка 2) и другую необходимую информацию. Для продолжения нажмите на кнопку **Ok**.¹

 $^{^1}$ В программе во всех последующих случаях нажатие клавиши <Ok> запоминает введенную информацию.

Пасспорт
Путь -
Имя файла - Noname
Шифр -
Илия, фаминлия -
Организация - БГТУ
(ОК

Рис. 2.4. Окно с паспор-

TOM

Шаг 3. Ввод исходных данных

После заполнения паспорта перед вами появится окно для ввода основных исходных данных (рис. 2.5). Его можно также вызвать, нажав на кнопку Ν

в главной панели инструментов (рис. 2.3).

Ввод исходных данных	×
Название стержня - 1 Продольная сила в Кн (по модулю) - 500.0 Геометрическая длина стержня в мм - 3000.0	Выберете: С Растяжение С Сжатие
✓ Максимальное усилие в стержнях решетки, в Кн (по в Примечание: +F Растяжение +F Растяжение -F Сжатие -F Сжатие -F Ди у-	модулю) - 500.0 1.0 1.0 Справка Далее

Рис. 2.5. Ввод исходных данных

Данное окно позволяет:

- ввести название или номер стержня;

- продольную силу в кН и задать растяжение или сжатие стержня;
- геометрическую длину стержня в мм² и задать коэффициенты приведения геометрической длины к расчетной³ µ;
- задать усилие в опорном раскосе, необходимое для определения толщины фасонки в стержнях ферм из уголков.

Нажатие клавиши **Ok** сохраняет введенные данные по стержню и выводит дополнительную панель инструментов (рис. 2.6).

Рис.2.6. Дополнительная панель инструментов

При нажатии на кнопку <u>Далее...</u> будет осуществлен переход к **Шагу 4**.

Шаг 4. Ввод дополнительных данных

Здесь вы можете изменить:

- Коэффициент надежности по назначению γ_n кнопка ^γ_n (рис. 2.7). По умолчанию принят равным единице.
- Коэффициент условий работы γ_c кнопка *^{*}* (рис. 2.8). По умолчанию принят равным единице (т. 6* [2]).
- Класс стали кнопка *Ry* (рис. 2.9). По умолчанию принята сталь C235 (т. 51* [2]).

² Геометрическая длина стержня – расстояние между центрами узлов, примыкающих к данному стержню.

³ Расчетная длина стержня в плоскости равна $l_x = l \cdot \mu_x$, из плоскости – $l_y = l \cdot \mu_y$.

7	
7 п - коэффициент надежности по назначению	
КЛАССЫ ОТВЕТСТВЕННОСТИ ЗДАНИЙ	Зыберете коэффициент
риказ №91 Госстроя РБ от 30.10.1992 СНиП 2.01.07 - 85	Класс I = 1
СНиП 2.01.07 - 85 "Напрузки и воздействия"	© Класс II = 0.95
Крытые сооружения с трибунами, здания театров, кинотеатров, цирков, крытых рынков, учебных заведений, детских дошкольных учреждений, главные корпуса ТЭС, ЛЭС.	С Класс III = 0.9
	🔿 Другое
КЛАСС II 0.95	0.80

Рис. 2.7. Выбор коэффициента надежности по

назначению γ_{n}

ЗЛЕМЕНТЫ КОНСТРУКЦИЙ (фрагмент таблицы 8')	Коэффициент условий работы	Выберете 1	коэффициент
 Сжатые элементы ферм перекрытий под зала теотрор илибор инистортнор под трибинаци. 	ми	0	1.05
помещениями магазинов, книгохранилищи арх помещениями магазинов, книгохранилищи арх вов и т.п. при весе перекрытий, равном или бо шем временной нагрузки	ли- рль- 	·	1
 Сжатые основные элементы (кроме опорни решетка составного таврового сечения из угол 	ых) Ков	C	0.95
сварных ферм покрытий и перекрытий (наприм стропильных и аналогичных ферм) при гибкос отностительно оси х а также у превышающей	иер сти ли-	0	0.9
бо равной 60		0	0.8

Рис. 2.8. Выбор коэффициента условий работы $\gamma_{\rm c}$

юлица т	Гаолица 2 Гаоли Класс ст	гали по СНи	ца 5 П II-23-81 *	"Стальны	е конструкц	ж."	
Сталь	Толщина, мм	Ryn, M⊓a	Run, MПa	Ry, M⊓a	Ru, M⊓a		Сталь
C235	От 2 до 20	235	360	230	350		⊙ C235 ◯ C285
C235	Св. 20 до 40	235	360	220	350		
C245	От 2 до 20	245	370	240	360		C C245 C C345
C245	Св. 20 до 30	235	370	230	360		
C255	От 4 до 10	255	380	250	370		
C255	Св. 10 до 20	245	370	240	360	C C255 C	C C255 C C345K
C255	Св. 20 до 40	235	370	230	360		
C275	От 2 до 10	275	390	270	380		C C275 C C375
C275	Св. 10 до 20	275	380	270	370	•	

Рис. 2.9. Выбор класса стали

Шаг 5. Задание предельной гибкости стержня λ_u

Предельные гибкости для сжатых стержией (СНиП II-23-81*, Т	аблица 19*)
Задаемся гибкостью стержия - 🛛 90 🔆	Выберете
ЭЛЕМЕНТЫ КОНСТРУКЦИЙ Предельная гибкость	💿 180 - 60 α
сжатых элементов	C 120
. Пояса, опорные раскосы и стойки, передающие	Ο 210 - 60 α
а) плоских ферм, структурных конструкций и простванственных конструкций из труб и цар-	C 220
ных уголков высотой до 50 м	🔿 Другое
труб и парных уголков высотой св. 50 м 120	120

Рис.2.10. Задание предельных гибкостей для сжатых стержней

Для задания предельной гибкости λ_u необходимо нажать на кнопку λ_u^{-} (Таблица 4) в случае сжатого стержня (рис. 2.10), и на кнопку λ_u^{+} (Таблица

5) в случае растянутого стержня (рис. 2.11) в дополнительной панели инструментов.

Значения предельных гибкостей для конкретных стержней можно взять из т.19*[2].

ЭЛЕМЕНТЫ КОНСТРУКЦИИ	Предельная г при воздейс:	ибкость растянут гвии на конструкі	ых элементов ции накгрузок	Выберете
	Динамических	Статических	От кранов и ж/д составов	C 200
 Пояса и опорные раскосы плоских фер и структурных конструкций 	ом 250	400	250 🔺	© 250 © 300
2. Элементы ферм и структурных конст ций, кроме указанных в поз. 1	рук- 350) 400	300	C 350
3. Нижние пояса подкрановых балок и фе	рм -	32	150	O 400
4. Элементы вертикальных связей меж	кду 300) 300	200	С Другое.

Рис.2.11. Задание предельных гибкостей для растянутых стержней

Шаг 6. Выбор типа сечения стержня

Рис. 2.12. Выбор типа сечения стержня

Для выбора типа подбираемого сечения стержня необходимо нажать на кнопку . Перед вами появится окно, представленное на рисунке 2.12.

Шаг 7. Задание толщины фасонки

В случае выбора сечения из двух равнополочных или не равнополочных уголков перед вами появится окно выбора толщины фасонки⁴ (рис. 2.13 [a]). В случае неправильного выбора будет выдано сообщение об ошибке (рис. 2.13 [б]).

В фермах с узлами на фасонках, толщина фасонок принимается в зависимости от усилий в стержнях решетки (как правило, по усилию в опорном раскосе, где усилие является максимальным). В фермах с пролетом более 24 метров допускается применение 2-х фасонок с разностью толщин не более 2мм.

Рекомендуемые толщины фасонок представлены в приложении

2.

⁴ В случае автоматического расчета толщина фасонки подбирается автоматически.

Vel	Расчетное	
Рекомендуемые тол	щины фасонок	
Максимальное усил	не в стержне 3725.80	kN
Величниа усилия, kN	Толщина фасони	н, вия
N <= 150	б	
150 < N <= 250	8	
250 < N <= 400	10	Information X
400 < N <= 600	12	
600 < N <= 1000	14	Толщина фасонки выбрана неправильно!
1000 < N <= 1400	16	
I	СК	

Шаг 8. Сортамент

После выбора толщины фасонки вы попадаете в окно, в котором по требуемому радиусу инерции (в случае сжатого стержня) и требуемой площади сечения осуществляется конструирование сечения стержня.

Если сечение не прошло по прочности или устойчивости, будет выдано сообщение об соответствующей ошибке. При нажатии на кнопку **Yes**, будет осуществлен возврат к началу **шага** 7, в противном случае – осуществлен переход к **шагу 9**.

Сортам	ент		12					X
Равноп	олочные уг	олки по ГОСТ іх,тр іу,тр х м М	Г 8509 - 86 = 3.333 см = 3.333 см уголка = 1 Принять	7.4104 см	^2 Отмена	1	×	/2 X
Ь, ММ	t, mm	В1, мм	А, см^2	z0, см	İX, CM	іх0, см	іуО, см	Macc
100	6.5	12	12.8	3.09	3.09	3.88	1.99	10.1
100	7	12	13.8	3.08	3.08	3.88	1.98	10.8
100	8	12	15.5	3.07	3.07	3.87	1.98	12.2
100	10	12	19.2	3.05	3.05	3.84	1.96	15.1
100	12	12	22.8	3.03	3.03	3.81	1.95	17.9
•	-							•

Шаг 9. Уточнение расчетного сопротивления стали R_y⁵

Как известно, расчетное сопротивление стали R_y как в фасонном, так и в листовом прокате зависит от толщины элемента. Поэтому пользователям предлагается уточнить R_y (рис 2.15). В случае неправильного выбора будет выдано сообщение об ошибке и осуществлен возврат к началу **шага 8**. Здесь возможен и второй случай.

Например, вы выбрали сталь C285, у которой максимальная толщина фасонного проката составляет 20 мм, а в сортаменте выбрали равнополочный уголок 250x30. Естественно, толщина уголка превышает максимальную толщину проката для стали C285. В этом случае будет выдано сообщение об ошибке (рис. 2.16).

Рис. 2.15. Уточнение расчетного сопротивления стали R_v

Informati	on X	
٩) Максимальная толщина выбранного Вами проката t=30.00 мм больше максимальной толщины (20 мм) для проката из стали C285. Измените толщину проката или класс стали.	
	OK	

Рис. 2.16

После нажатия клавиши **Ok**, нажав на кнопку **R** в дополнительной панели управления можно самостоятельно вернуться к **шагу 4**, чтобы поменять класс стали, или к **шагу 7**, чтобы изменить толщину прокатного элемента.

Шаг 10. Просмотр результатов расчета

Находясь в окне просмотра результатов (рис. 2.17) вы можете выполнить ряд действий. Если результаты расчета вас не устраивают (например, недонапряжение больше 5%), можно войти в сортамент и выбрать новый стержень. Для этого необходимо нажать на клавишу Типы сечений стержней . Если же результаты расчета стержня вас устраивают, вы можете сохранить их на диск. Для этого необходимо нажать на кнопку Сохранить . Результаты расчета будут записаны в текстовый файл в Windows-кодировке в текущий каталог, выбранный вами в шаге 2. При этом, если такой файл существует, то вы можете записать поверх него.

Для продолжения расчета необходимо нажать на клавишу **Продол**жить. При этом все последующие результаты расчета будут добавляться в конец файла (возврат к **шагу 3**). Для начала расчета нового объекта нажмите на кнопку Сначала (возврат к **шагу 2**).

Для просмотра, редактирования и печати подробных результатов расчета нажмите на кнопку **Просмотр**. Для просмотра и печати результатов расчета в виде таблицы нажмите на кнопку **Таблица**.

Контрольные распечатки подробных результатов расчета и итоговой таблицы приведены в **приложении 3**.

Рис. 2.17. Результаты расчета стержня

Шаг 11. Просмотр, редактирование и печать результатов расчета

Вся обработка результатов расчета осуществляется во встроенном в программу текстовом редакторе Rich Editor (рис. 2.18).

Работа с редактором аналогична работе с редактором MS Word.

Для открытия сохраненного документа жмите кнопку **Открыть** Чтобы напечатать текущий документ, нажмите кнопку **Печать** на стандартной панели инструментов. Для сохранения внесенных в документ изменений – кнопка **Сохранить** .

Рис. 2.18. Редактирование результатов расчета

При печати таблицы с результатами необходимо установить войти в меню **Файл**, выберете пункт - **Макет страницы...** Появится окно

Макет страницы	<u>? ×</u>
Бумага <u>Размер: А4 210 x 297 мм</u> Ист <u>о</u> чник: Ленточный податчик	Образец
Ориентация Поля (мм) С книжная девое: 15 дравое: 15 е дльбомная верхнее: 20 нижнее: 20	In advances of the second seco
Верхний колонтитул: 🕼	
Нижний колонтитул: Страница &р	
ОК	Отмена Прин <u>т</u> ер

Рис. 2.19. Окно макета страницы

Чтобы таблица полностью разместилась на листе, вы должны убедиться, что установлена альбомная ориентация страницы, и левое и правое поля страницы установлены по 10-15 мм.

ПРИЛОЖЕНИЕ 1. КЛАССЫ ОТВЕТСТВЕННОСТИ ЗДАНИЙ И СО-ОРУЖЕНИЙ ЖИЛИЩНО – ГРАЖДАНСКОГО И ПРОИЗВОДСТВЕН-НОГО НАЗНАЧЕНИЯ

Согласно приказу Госстроя РБ от 30 октября 1992 г. № 91

<u>КЛАСС I.</u> Коэффициент надежности по назначению $\gamma_n = 1.0$

Жилые дома:

- высотой 9 этажей и более;

Общественные здания:

- детские дошкольные сооружения;
- учебные заведения всех видов (школы, училища, вузы, учебные комбинаты);
- внешкольные учреждения для детей и подростков;
- больницы на 100 коек и более, родильные дома и акушерские корпуса;
- предприятия розничной торговли с торговой площадью 200 кв. метров и более;
- предприятия общественного питания на 200 мест и более;
- предприятия бытового обслуживания на 150 мест и более;
- гостиницы, санатории, учреждения отдыха и туризма;
- мотели, кемпинги, пансионаты, профилактории вместимостью 250 мест и более;
- театры, цирки, кинотеатры, концертные и танцевальные залы, дворцы и дома культуры, клубы, музеи, выставочные залы, библиотеки, государственные архивы;
- административные здания, кроме входящих в группу В (СНиП II-84-78);
- конструкторские, проектные, изыскательские, научноисследовательские и комплексные институты, организации, вычислительные центры;
- крытые спортивные сооружения с трибунами на 400 мест и более;
- вокзалы всех видов;

- кооперированные и блокированные комплексы общественных, общественно-торговых и культурных центров;
- промышленные объекты (заводы, фабрики, крупные цеха, предприятия с вредными выделениями);
- сельскохозяйственные и производственные объекты (крупные животноводческие 400 и более коров, 1000 и более голов откорма, на 5 тыс.
 и более свиней, птицеводческие фермы и фабрики свыше 10 тыс.).

<u>КЛАСС II.</u> Коэффициент надежности по назначению $\gamma_n = 0.95$

Жилые дома:

- Высотой 3 этажа и более;

Общественные здания:

- больницы с количеством коек 100 мест и более;
- поликлиники, амбулатории, станции скорой помощи, женские консультации, санитарно-эпидемиологические станции, аптеки;
- предприятия розничной торговли с площадью свыше 50 кв. метров;
- предприятия бытового обслуживания с количеством рабочих мест свыше 5;
- мотели, кемпинги, пансионаты, профилактории вместимостью до 250 мест;
- административные здания, входящие в группу В (СНиП II-84-78);
- крытые спортивные сооружения без мест для зрителей, а также с местами для зрителей до 250;
- отдельные здания промышленного типа, сельскохозяйственные, производственные фермы и комплексы, не вошедшие в I класс ответственности.

- жилые дома до 3-х этажей;
- здания вспомогательного и хозяйственного назначения в составе комплексов общественного, промышленного и сельскохозяйственного назначения;

- временные здания с сооружения;
- предприятия розничной торговля с торговой площадью до 50 кв. м.;
- предприятия общественного питания с количеством мест до 20;
- предприятия бытового обслуживания с количеством мест до 5.

ПРИЛОЖЕНИЕ 2. РЕКОМЕНДУЕМЫЕ ТОЛЩИНЫ ФАСОНОК

Таблица 1.

Максимальное усилие в стержне решетки, кН	Толщина фасонки, мм
$N \leq 150$	6
$150 < N \leq 250$	8
$250 < N \le 400$	10
$400 < N \leq 600$	12
$600 < N \le 1000$	14
$1000 < N \le 1400$	16
$1400 < N \le 1800$	18
N ≥ 1800	20

ЛИТЕРАТУРА

- СНиП 2.01.07 85. Нормы проектирования. Нагрузки и воздействия. Госстрой СССР. М.: ЦНИТП Госстроя СССР. 1986 г. 36 с.
- СНиП II-23-81*. Стальные конструкции. Госстрой СССР. М.: ЦНИТП Госстроя СССР. 1989 г.
- Пособие по проектированию строительных конструкций (СНиП II-23-81*). Госстрой СССР. 1989 г.
- А.Б. Шурин, А.В. Мухин. Система автоматизированного проектирования центрально – нагруженных стальных стержней «Shumax». Эффективные строительные материалы, конструкции и технологии. Сб. трудов. БГТА – 2000 г.
- 5. СНиП III-18-75 «Правила производства и приема работ. Металлические конструкции». Госстрой СССР.
- 6. Справочник проектировщика. В 3ч. «Металлические конструкции»; М.: издательство АСВ 1998г.
- А. П. Мандриков. Примеры расчета металлических конструкций. Издание 2-е. Москва, Стройиздат – 1991г.

УЧЕБНОЕ ИЗДАНИЕ

Составители:

Андрей Брониславович Шурин Анатолий Викторович Мухин

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

(Инструкция пользователя)

по проектированию центрально - нагруженных стальных стержней с использованием ИВК «*SHUMAX*» по дисциплине «*МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ*» для практических занятий, курсового и дипломного проектирования Для студентов специальности «*ПРОМышленное и гражданское строительство»* (70 02 01) очной и заочной форм обучения

Ответственный за выпуск: Шурин А.Б. Редактор: Строкач Т.В. Корректор: Никитчик Е.В. Подписано к печати . Формат 60х84 1/₁₆. Усл. печ. л. . Уч. изд. л. . Зак. № . Тираж 50 экз. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет».

224017, г. Брест, ул. Московская, 267.