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1 Complex Number System

1.1 The Complex Number System. Fundamental Operations with Complex Numbers

There is no real number x that satisfies the polynomial equation x* 4+ 1= 0. To permit so-
lutions of this and similar equations, the set of complex numbers is introduced.
We can consider a complex number as having the form « + ib where a and b are real

numbers and i, which is called the imaginary unit, has the property that iP=—1.fz=a+ib
, then « is called the real part of z and b is called the imaginary part of z and are denoted by
Re{z} and Im{z}, respectively. The symbol z, which can stand for any complex number, is
called a complex variable.

Two complex numbers a +ib and ¢ + di are equal ifand only if a=c and b=d . We
can consider real numbers as a subset of the set of complex numbers with 5= 0. Accordingly
the complex numbers 0 + 0; and —3 + 0i represent the real numbers 0 and -3, respectively.
If @ =0, the complex number 0 + »i or bi is called a pure imaginary number.

The complex conjugate, or briefly conjugate, of a complex number a + ib is a —ib. The

complex conjugate of a complex number z is often indicated by z or z*.
In performing operations with complex numbers, we can proceed as in the algebra of real

numbers, replacing i* by -1 when it occurs.
(1) Addition
(a+bi)+(c+di)=a+bi+c+di=(a+c)+(D+d).
(2) Subtraction
(a+bi)—(c+di)=a+bi—c—di=(a—c)+(b—d)i.
(3) Multiplication
(a + bi)- (¢ + di) = ac + cbi + bdi* + adi = (ac — bd) + (ad + bc)i.

(4) Division
a+bi _a+bi c—di _ac+bd+(bc—ad)i ac+bd  bc—ad
c+di c+di c—di +d? A +d* A+dr

The absolute value or modulus of a complex number a4 ib is defined as

la+bi| =a* +b* .
Example 1 |4 4 2i|=+/(—4)> + 2> =420 =245

Suppose real scales are chosen on two mutually perpendicular axes X‘OX and Y'OY
[called the x and y axes, respectively] as in Fig.1. We can locate any point in the plane deter-
mined by these lines by the ordered pair of real numbers (x, y) called rectangular coordinates
of the point. Examples of the location of such points are indicated by P,Q,R,S,and T inFig.1.

Since a complex number x + iy can be considered as an ordered pair of real numbers, we
can represent such numbers by points in an xy plane called the complex plane or Argand dia-
gram. The complex number represented by P, for example, could then be read as either (3,4)

or 3+ 4i. To each complex number there corresponds one and only one point in the plane, and
conversely to each point in the plane there corresponds one and only one complex number.
Because of this we often refer to the complex number z as the point z. Sometimes, we refer to
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the x and y axes as the real and imaginary axes, respectively, and to the complex plane as
the z plane. The distance between two points, z, = x; +iy, and z, = x, +iy,, in the complex

plane is given by |z, — z,|= \/(xl — X, )2 +(n - y2>2 :

}

Fig.1
1.2 Graphical Representation of Complex Numbers. Polar Form of Complex Numbers
Let P be apointin the complex plane corresponding to the complex number (x, y) or x + iy

. Then we see from Fig.2 that x =rcosy,y =rsingp, where r=+/x> + > =[x +iy| is
called the modulus or absolute value of z = x + iy [denoted by mod z or \z\ and ¢, called the

amplitude or argument of z = x 4 iy [denoted by argz], is the angle that line OP makes with

the positive x axis.
It follows that

z=x+iy=r(cosp+isinyp) (1)
which is called the polar form of the complex number, and » and  are called polar coordinates.

¥

o )
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& : X

] x

Fig.2
For any complex number z = 0 there corresponds only one value of ¢ in 0 < < 27 . How-
ever, any other interval of length 27, for example —m <@ <, can be used. Any particular
choice, decided upon in advance, is called the principal range, and the value of ¢ is called its
principal value.
Let z, = x, + iy, = (cosg, +ising,) and z, = x, +iy, =, (cosp, +ising, ), then
we can show that
2,2, = iy (cos(y + ) +isin(p, + ¢, (2)



Z nI ..
1= _1<COS(801 —py) Fisin(p — 902) (3)
Z n
A generalization of (2) leads to
212y 2, =Hly oo T, (cos(go1 + @, +...+p,) +isin(p, + o, +...+ gon) (4)

and if z; =...= z, = z this becomes
z" =r"(cosnp + isinny) (5)
which is often called De Moivre’s theorem.
1.3 Euler’s Formula. Polynomial Equations. Roots of Complex Numbers
1
A number w is called an » -th root of a complex number z if w" = z, and we write w=z"

. From
De Moivre’s theorem we can show that if 72 is a positive integer,

1 1
COS[SD+2k7T]—|—lSln[L2kﬂ-]Jsk:0’l’2"n—l (6)

n n

1
from which it follows that there are » different values for z7 , i.e., n different n -th roots of z,

provided z=0.
2 3

By assuming that the infinite series expansion e* =1+ x +%+% +... of elementary
calculus holds when x =iy, we can arrive at the result
e =cosp +isingp (7)

which is called Euler’s formula. It is more convenient, however, simply to take (7) as a definition
of €. In general, we define

e’ = e = e"(cos y +isin y) (8)

Let P [Fig.3] be the complex plane and consider a sphere S tangentto P at z=0. The

diameter NS is perpendicular to P and we call points N and S the north and south poles of
S'. Corresponding to any point 4 on P we can construct line NA intersecting S at point 4’.
Thus to each point of the complex plane P there corresponds one and only one point of the
sphere S, and we can represent any complex number by a point on the sphere. For complete-
ness we say that the point N itself corresponds to the “point at infinity” of the plane. The set of

all points of the complex plane including the point at infinity is called the entire complex plane,
the entire z plane, or the extended complex plane.




The above method for mapping the plane on to the sphere is called stereographic projection.
The sphere is sometimes called the Riemann sphere. When the diameter of the Riemann sphere
is chosen to be unity, the equator corresponds to the unit circle of the complex plane.

Example 2 Perform each of the indicated operations.

Solution

(@) B+20)+(6—7i)=34+6+2i—7i=9—5i.

(b) (—4—-31)—(5—7))=—4—-5-3i+7i=—-9+4i.

(©) 2—3i)-(5+2i)=2-5+2-2i—5-3i—3-2i* =10+ 6+4i —15i =16 —11i.

(d) 3-2i 3-2i 1-6i _ 3—2i—18i+12i° _—9-200 9 201,

1+6i 1+6i 1—6i 1—36i* 37 37 37
Example 3 Suppose, z;, =2 +1i, z, =3 —2i. Evaluate each of the following.
Solution

(a) [32, — 42,| =32+ 1) — 43— 20)| =|-6 + 11| =+/(=6)* +11* =157 .
(b) z° —3z% +4z, —8=(2+i) —3Q2+i)* +4Q2+i)—8=
=23 43.2% 4327 +i° —32° +4i+i*)+8+4i—8=
=8+12i—6—i—12—-12i +3+8+4i —8=—-T7+3i.
Example 4 Express each of the following complex numbers in polar form.
Solution (a) 2+ 2+/3i [See Fig.4]

Fig. 4
Modulus or absolute value, » = ‘2 + 2\/51" —J4+12 =4,

Amplitude or argument, o = arcsin73 =60° = g(radians).
Then
2423 = r(cosp +isiny) =4(cos60° +isin60°) = 4[005% + ising]

i
The result can also be written as, using Euler’'s formula, 4e 3 .

(b) —/6 —~/2i [See Fig.5]




r—‘ —J6— \/_l‘— 6+2 =22

¢ =180 +30°=210° :7%

Then
i
—\/g—\/_l 2\/—[008?4-1811’1—] 2\/—6
(c) —3i [See Fig.6]
ﬂf,,-xl t
b .
r
Fig.6
3T

r=|-3i|=10-3i|=+0+9 =3, ¢:270°:7.
Then

37Tl

—3i=3 cos3——|—zs1n3— =3¢ 2
2 2

Example 5 Find all values of z for which z° = —32, and (b) locate these values in the com-
plex plane.

Solution

In polar form, —32 = 32(cos(w + 2mk) + isin(r + 27k) ),k = 0,+1,+2....

Let z = r(cosy +isiny). Then, by De Moivre’s theorem,

2= (cos 5S¢ +isin Sgo) = 32(005(7r + 27k) + isin(mw + 27Tk)) .

_ (m + 27k)

and so > = 32,5¢ = 7 + 2k, from which » = 2, . Hence

z= 2[005 il —|—527rk] + isin[ﬂ —|—527rk]] .

fk=0,z=1z = 2[00514—1'sinz
5 5

fhk=1z=2z,= 2[cos%+isin3% :

If k=2,z=z, :2[cos%+isin5?7r =-2.

f k=3,z=z, —2[cos7?—|—zsm7%]



fhk=4,z=12,= 2[c059?7r—|—isin9?7r].

By considering k£ =5,6,.. as well as negative values, —1,—2,... , repetitions of the above
five values of z are obtained. Hence, these are the only solutions or roots of the given equation.

1
These five roots are called the fifth roots of —32 and are collectively denoted by(—32)s. In
1
general, a™ represents the » -th roots of a and there are n such roots.
(b) The values of z are indicated in Fig.7. Note that they are equally spaced along the cir-
cumference of a circle with center at the origin and radius 2. Another way of saying this is that
the roots are represented by the vertices of a regular polygon.

St
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Fig.7
Example 6 Represent graphically the set of values of z for which (a) Z:’;‘:z,
Z
(b) 2_3‘< 2.
z+3

Solution

The given equaton is  equivalent to |z—3]=2|z+3] o, if
z=Xx+1iy, x+iy—3‘:2‘x+iy+3‘,i.e.,

\/(x— 3)2 + y2 = 2\/(x + 3)2 + y2
Squaring and simplifying, this becomes
x>+ y* +10x4+9=0
or
(x+5)7 + 12 =16
Le., |z + 5| =4, acircle of radius 4 with center at (—5,0) as shown in Fig.8.
(b) The given inequality is equivalent to  |[z—3|<2[z+3| or

\/(x—3)2 +y? < 2\/(x—i—3)2 +y*. Squaring and simplifying, this becomes

X4y £10x4+9>00or (x+5) + > 16, e, |z +5|> 4 .
The required set thus consists of all points external to the circle of Fig.8.



Fig.8

Exercise Set 1
In Exercises 1 to 9 perform each of the indicated operations:

1. (2—31)+ (5+8i). 2.(i—2)-((4—0)+3(7+60). 3. (3+)2—i)4+30).

3—i
4. _ 5 A4 3 - . 2_.2 y

51 S. 4i° =31 +2i° +7i—1. 6. (2—i)" (3+1)

Y .4 .9 .16
7, 4Z00G=2) 8. (i* —5i)(3° +2+1) g L1 *1
1+i 2 +i"

In Exercises 10 to 12 suppose z, =2 +i, z, =3 —2i. Evaluate each of the following:
10. z,° + 2z, —3i +5. 11. ‘222—321‘2. 12. |22, — 47,2,|.

In Exercises 13 to 18 describe and graph the locus represented by each of the following
13. |z —i|]=2. 14, |z +2i|+|z—2i|=6.  15.]z—3|—|z +3|=4.
16. z(z +2)=3. 17. Im{z%} = 4. 18. Im{z}Re{z} =1.

In Exercises 19 to 24 describe graphically the region represented by each of the following:
19. 1<z +4|<2. 20. Re{z*} > 1. 21. |z + 31> 4.

22. |24 2|+|z—2|<10. 23 ogargz<%r. 24, —%garg(z—i)<%.

In Exercises 25 to 30 express each of the following complex numbers in polar form:

25. 2 —2i. 26. —1++/3i. 27. \/2i.
28. —2\3-2i. 29. ? _L 30. 5.

In Exercises 31 to 35 solve the following equations, obtaining all roots:
31. 22 +4=0. 32. z* —81=0. 33. 2 —27=0.
34. 22 + 6z +25=0. 35. z* 4522 +4=0. 36. 22 —2z4+5=0.



2 Functions, Limits, and Continuity

2.1 Functions of Complex Variable
A symbol, such as z, which can stand for any one of a set of complex numbers is called a
complex variable.
Suppose, to each value that a complex variable z can assume, there corresponds one or
more values of a complex variable w. We then say that w is a function of z and write w= f(z)

or w=G(z), etc. The variable z is sometimes called an independent variable, while w is
called a dependent variable. The value of a function at z = a is often written f'(a). Thus, if
f(z)= 2z, then f(2i)=(2i)" =—4.

If only one value of w corresponds to each value of z, we say that w is a single-valued
function of z or that f(z) is single-valued. If more than one value of w corresponds to each

value of z, we say that w is a multiple-valued or many-valued function of z.

A multiple-valued function can be considered as a collection of single-valued functions, each
member of which is called a branch of the function. It is customary to consider one particular
member as a principal branch of the multiple-valued function and the value of the function cor-
responding to this branch as the principal value.

Example 7

(a) If w= 2z, then to each value of z there is only one value of w. Hence, w = f(z)=1z*
is a single-valued function of z.

(b) If w? =z, then to each value of z there are two values of w. Hence, w” = z defines a
multiple-valued (in this case two-valued) function of z.

Whenever we speak of function, we shall, unless otherwise stated, assume a single-valued
function. If w= f(z), then we can also consider z as a function, possibly multiple-valued, of

w, written z = g(w) = £~ '(w). The function 7' is often called the inverse function corre-

sponding to f. Thus, w= f(z) and w= f~'(z) are inverse functions of each other.

If w=u-+iv (where u and v are real) is a single-valued function of z = x 4 iy (where x
and y are real), we can write u +iv = f(x +iy). By equating real and imaginary parts, this
is seen to be equivalent to

u=u(x,y), v=v(x,y) (1)

Thus given a point (x, y) in the z plane, such as P in Fig.9, there corresponds a point (u,

v) in the w plane, say P’ in Fig.10. The set of equations (1) [or the equivalent, w= f(z)] is

called a transformation. We say that point P is mapped or transformed into point P’ by means
of the transformation and call P’ the image of P.

"
2 plane W plane

F
-
i_r'/--\" ] /
LN o, i o
P I\,_ P

I 1}

Fig.9 Fig.10
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In general, under a transformation, a set of points such as those on curve PQ of Fig.9 is
mapped into a corresponding set of points, called the image, such as those on curve P'Q’ in
Fig.10. The particular characteristics of the image depend of course on the type of function 1(z)
, Which is sometimes called a mapping function. If £(z) is multiple-valued, a point (or curve) in
the z plane is mapped in general into more than one point (or curve) in the w plane.

Example 8
If w=z>, then w=u+iv=(x+iy)> =x>—y*+2xyi and the transformation is
u=x>—y? v=2xy. The image of a point (1,2) in the z plane is the point (—3,4) in the
w plane.
2.2 The Elementary Functions
1. Polynomial Functions are defined by
w=ayz" +az""' +..4+a,= P(z) (1)
where a, = 0,aq,,...,a, are complex constants and » is a positive integer called the degree of
the polynomial P(z). The transformation w=az + b is called a linear transformation.
2. Rational Algebraic Functions are defined by
we L) )
0(2)

where P(z) and Q(z) are polynomials. We sometimes call (2) a rational transformation. The

: az+b . " , .
special case w= where ad — bc = 0 is often called a bilinear or fractional linear trans-

cz+d
formation.
3. Exponential Functions are defined by
w=e¢” =e ™ =e"(cos y +isin y) (3)
where e is the natural base of logarithms. If « is real and positive, we define
af = ezlna (4)

where Ina ais the natural logarithm of «. This reduces to (3) if a =e.

Complex exponential functions have properties similar to those of real exponential functions.
For example, e™- e =¢” 772,

4. Trigonometric Functions. We define the trigonometric or circular functions sin z,cos z,
etc., in terms of exponential functions as follows:

) e“—e ” “re ¥ sinz CoSz
sinz=———,c08z=——, tgz= , Ctgz =— (5)
21 2 CcoSz sin z

Many of the properties familiar in the case of real trigonometric functions also hold for the
complex trigonometric functions. For example, we have:

sin®z +cos’ z=1;1+ ‘[g2 z= ;8in(—z) = —sinz;cos(—z) =cosz.

COS2 z

5. Hyperbolic Functions are defined as follows:

11



© ¢ , ChZ:e—i—e , ch:i, Cch:e—i—e (6)

2 e“+e” e“—e °

The following relations exist between the trigonometric or circular functions and the hyperbolic
functions:

shz=

shz=—isin(iz), chz=cos(iz),
sinz=sinx-chy+icosx-shy,
cosz=cosx-chy—isinx-shy.

6. Logarithmic Functions. If z=¢", then we write w=1nz, called the natural logarithm

of z. Thus the natural logarithmic function is the inverse of the exponential function and can be
defined by

w:an:ln‘z‘—i—iargz—i—iﬂmr,kGZ (7)
where z = re™ = re"¥*™ Note that In z is a multiple-valued (in this case, infinitely many-

valued) function. The principal-value or principal branch of Inz is sometimes defined as
Inr +ip, where 0 < < 2m. However, any other interval of length 27 can be used, e.g.,

—m <@ <, efc.

The logarithmic function can be defined for real bases other than e . Thus, if z=a", then
w=log, z,where >0 and a = 0,1. In this case, z=¢""“ and so, w:in—z.
na

7. Inverse Trigonometric Functions. If z=sinw, then w= sin"! z is called the inverse
sine of z or arcsin of z. Similarly, we define other inverse trigonometric or circular functions

cos |z , tg*1 z, etc. These functions, which are multiple-valued, can be expressed in terms of

natural logarithms as follows. In all cases, we omit an additive constant 2k, k € Z in the log-
arithm:

w=Arcsin z=—iLn|iz + 1—22), w= Arccos z=—iLLn| z+ zz—l),
w:Arctgz:iLnl—HZ, w:Arcctgz:—LLn1+lZ (8)
I l—iz 21 iz—1

8. The Function z®, where o may be complex, is defined as €. Similarly, if 7(z) and

g(z) are two given functions of z, we can define 8 (z)=e$®™/() |n general, such
functions are multiple-valued.
9. Algebraic and Transcendental Functions. If w is a solution of the polynomial equation
B(2)W" + B()W" " +..+P,_(2)w+ P,(z) =0 9)
where F, = 0,F/(z),...,P,(z) are polynomials in z and » is a positive integer, then w= f(z)
is called an algebraic function of z.
Any function that cannot be expressed as a solution of (9) is called a transcendental function.

The logarithmic, trigonometric, and hyperbolic functions and their corresponding inverses are
examples of transcendental functions.
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The functions considered in 1-8 above, together with functions derived from them by a finite
number of operations involving addition, subtraction, multiplication, division and roots are called
elementary functions.

Example 9 Determine the values of (a) i '+, (b) Arcsin3, () Ln(12+5i).
Solution

N . . ™
(a) i = (F)Lni — o(HHin]i |iarg it 2km) _ e(Hl)[lzJ“zkm] _ e(’_l)[2+2k”] _
—[72T+2k7r] i[72r+2k7r]

—[”+2lm]
=¢c e =

coS [% + 2k7r] +isin [% + 2k7r]} =

=1 e_[gﬂkw] keZ.

(b) Arcsin3=—iLn(3i +i8)= —iLn((3 :|:2\/§)i> —

=—i

In(34242) +i%+2km’

:%+2k7r—iln(3j:2\/§), kel
(¢) Ln(12+5i) =1In|12 + 5i |+ iarg (12 + 5i) + i 2km =
|12 4 5i| =144 +25 =13,
, 5
= 5 :1n13—|-z[arctgﬁ—|—2k7r

- keZ.
12>0, 5>0, arg(12-|—51): arctgE

Example 10 Show that the line joining the points P(—2,1) and Q(1,—3) in the z plane is

mapped by w= z? into curve joining points P'Q’ [Fig.11] and determine the equation of this

curve.
Solution
Points P and O have coordinates (—2,1) and (1,—3). Then, the parametric equations of

the line joining these points are given by
(= — =3t—-2
x—(-2) _ Y 1 ~for X 5
1-(-2) —-3-1 y=1-4t.

1 plans w plane

Fig.11
The equation of the line PQ can be represented by z =3¢ — 2 4 i(1— 4¢) . The curve in the
w plane into which this line is mapped has the equation

w=2z=(3t =2 4i(1—4)) = (3t —2)* — (1— 46)> +2(3t —2)(1— 4t)i =
=3 — 4t —Tt* + (—4+ 22t —241%)i.
13



Then, since w=u + iv, the parametric equations of the image curve are given by
u=3—4t—7t* and v=—4+ 22t — 24r".
By assigning various values to the parameter ¢, this curve may be graphed.

2.3 Limits. Continuity
Let f(z) be defined and single-valued in a neighborhood of z = z, with the possible excep-
tion of z = z,, itself (i.e., in a deleted 6 neighborhood of z,). We say that the number L is the
limit of f(z) as z approaches z, and write lim f(z)= L if for any positive number & (how-

z—2
ever small), we can find some positive number 6 (usually depending on ¢) such that
|/ (z)— L| < whenever 0 < |z —zy| <6.

In such a case, we also say that f(z) approaches L as z approaches z, and write
f(z)— L as z — z,. The limit must be independent of the manner in which z approaches z,

Geometrically, if z, is a point in the complex plane, then lim f(z)= L if the difference in

z—z(

absolute value between f(z) and L can be made as small as we wish by choosing points z
sufficiently close to z, (excluding z = z, itself).

By means of the transformation w:l, the point z=0 (i.e., the origin) is mapped into
z

w= 00, called the point at infinity in the w plane. Similarly, we denote by z = o0, the point at

infinity in the z plane. To consider the behavior of f(z) at z=o00, it sufficestolet z = 1 and
w

1
w
We say that lim f(z)=L or f(z) approaches L as z approaches infinity, if for any

z—z(

examine the behavior of f [ ] atw=0.

e>0,we can find A > 0 such that | /(z) — L| < e whenever |z|> M .
We say that lim f(z) =00 or f(z) approaches infinity as z approaches z,, if for any

z—2g
N >0, we can find § >0 such that | /(z)|> N whenever 0 <|z —z,| <.

Let f(z) be defined and single-valued in a neighborhood of z =z, as well as at z = z,
(i.e., ina ¢ neighborhood of z,). The function f(z) is said to be continuous at z =z, if
lim f(z)= f(z,).Note that this implies three conditions that must be met in order that f'(z)

zZ—Z

be continuous at z = z:
1. lim f(z) =L must exist;

z—Z)

2. f(z,) mustexist, i.e., f(z) isdefined at z,;

3. L=f(zp).

Equivalently, if f(z)is continuous at z,, we can write this in the suggestive form

14



lim f(z):f[lim z].
Z—Z() Z—Z()
Points in the z plane where f(z) fails to be continuous are called discontinuities of f'(z),
and f(z) is said to be discontinuous at these points. If lim f(z) exists but is not equal to

z—z()

f(zy), we call z, a removable discontinuity since by redefining f(z,) to be the same as
lim f'(z), the function becomes continuous.

z—2Z(

Alternative to the above definition of continuity, we can define f(z) as continuous at z = z,
if for any £ >0, we can find § >0 such that | /() — f(z,)| <& whenever |z — zy| <. Note
that this is simply the definition of limit with L = f'(z,) and removal of the restriction that z = z,

To examine the continuity of f(z) at z=o00, welet z= 1 and examine the continuity of
w

f[l] at w=0.
w

A function f(z) is said to be continuous in a region if it is continuous at all points of the
region.

Exercise Set 2

1.Let w= f(z)=2z(2—z). Find the values of w corresponding to (a) z=1+1, (b)
z =2 —2i and graph corresponding values in the w and z planes.
14z
11—z

In Exercises 3 to 8 separate each of the following into real and imaginary parts, i.e., find
u(x,y) and v(x,y) suchthat f(z)=u+iv:

2.Let w= f(2)= Find: (@) f(9), (b) f(1—17) and represent graphically.

3. w=Q2-3)z"—iz—i. 4.w:‘z‘-Rez. 5.w:Z_l_.
zZ41
6. w=5iz—iz>—1. 7.w=z-Imz. 8. w=3z2—-2iz4+8.
9. Find all values of z for which (a) ¥ =1, (b)e** =i.
In Exercises 9 to 21 find the value of
10. Ln(\3 i), 1. Ln(1++/34). 12. Ln(—1—1).
(37 . T s
13. - . 14, ——1il. =i
sm[ 2 —l—z] cos[6 z] 15. tgzz.
16. sh|1—"i. 17. ch|2 + 4|, A"
S [ 21] C —|—4l ‘I8.<x/§—|—l) .

15



19. Arcsin(—2+\/§i>. 20. Arccos(2—x/§i). 21. Arctg 12_5i.

In Exercises 22 to 28 determine the types of the curves given by the equation

e 1yl e
2. == Ly . 28, }m:(zzz%ft)FZZ)——Imt%+ 41 4-4).
C
26.Z:2+t+i1+t. 27.Z:1+t+i2+t.
2—1 11—t l—t  2—t

3 Complex Differentiation and the Cauchy-Riemann Equations

3.1 Derivatives. Analytic Functions. Cauchy-Riemann Equations.
Geometric Interpretation of the Derivative

If £(z) is single-valued in some region R of the Z plane, the derivative of f(z) is defined
as

) Az)— f(2)
/ — l f(Z+ 1
f(2)= lim ~ (1)
provided that the limit exists independent of the manner in which Az — 0. In such a case, we
say that f'(z) is differentiable at z. In the definition (1), we sometimes use /4 instead of Az.

Although differentiability implies continuity, the reverse is not true.
If the derivative f”(z) exists at all points z of a region R, then 7(z) is said to be analytic

in R and is referred to as an analytic function in R or a function analytic in R . The terms
regular and holomorphic are sometimes used as synonyms for analytic.

Afunction f(z) is said to be analytic at a point z, if there exists a neighborhood \z — zo\ <o
at all points of which f'(z) exists.

A necessary condition that w= f(z) =u(x, y) 4+ iv(x, y) be analyticin aregion R is that,
in R, u(x,y) and v(x, y) satisfy the Cauchy-Riemann equations

du_ov du__0v 2
ox 0Oy’ oy 0x

If the partial derivatives in (2) are continuous in R, then the Cauchy-Riemann equations are
sufficient conditions that f(z) be analyticin R ..

The functions u(x, y) and v(x, y) are sometimes called conjugate functions. Given u(x, y)
having continuous first partials on a simply connected region R , we can find v(x, y) (within an
arbitrary additive constant) so that u +iv =w= f(z) is analytic.

If the second partial derivatives of u(x,y) and v(x,y) with respect to x and y exist and
are continuous in a region R ,then we find from (2) that

2 2 2 2
8—Z+a—2:0, 6—‘;4—8—‘;:0 (3)
ox~ Oy ox~ Oy

Functions such as u(x, y) and v(x, y) which satisfy Laplace’s equation in a region R are

16



called harmonic functions and are said to be harmonic in R .

Let z, [Fig.12] be a point P in the z plane and let w, [Fig.13] be its image P’ in the w
plane under the transformation w= f(z). Since we suppose that f(z) is single-valued, the
point z, maps into only one point wy,.

z plona

AL 4z - a4
B x

Fig.12 Fig.13

If we give z, an increment Az, we obtain the point O of Fig.12. This point has image Q'
in the w plane.
Thus, from Fig.13, we see that P'Q’ represents the complex number
Aw= f(zy+ Az)— f(z,). It follows that the derivative at z, (if it exists) is given by
lim LGt A= f(z) _ o PO (4)
Az—0 Az 0—P PQ
that is, the limit of the ratio P'Q’ to PQ as point O approaches point P. The above interpre-
tation clearly holds when z, is replaced by any point z.
Example 11 Find out which of the following functions are analytic at least at one point
@) w=(Q2+5i)z—iz*+3i; b) w=z*-7Z.

Solution
(a) If z=x+1iy, then

w=2450)z—iz? +3i=2+5)(x+iy)—i(x+iy)’ +3i=2x -5y +
Hi(5x +2p) + 2xy —i(x2 — ) = 3i = (x — 5y 4+ 2xp) + i(—x* + y* +5x+ 2y —3)
u=x-5y+2xy, v=y"—x*+5x+2y—3
ul =(x—5y+2xp) =1+2y, uy, =(x—5y+2xy), =—5+2x.
v;:(yz—x2+5x—|—2y—3);:—2x+5, v;:(yz—xz—|—5x—|—2y—3)'y:2y—|—2.
From the Cauchy-Riemann equations
u, =V, 142y =2y+2 1=2
{ ==V {—5+2x:2x—5’ {0:0'

u,=-—v
The system has no solution, then the function is not analytic at any points of the complex
plane.
(b) If z=x+iy, then

w=z"Z=x+ip) (x—iy)=(x" — ¥+ 20i)(x —iy) = (X + xp>) +i(x*y + ).
17



u:x3—|—xy2, v:xzy—l—y3.
I .3 2\ __ 2 2 /I .3 2\
up =+’ =32+ )7, uy = (" + %), =2xp,

v =(x"y+ ), =2xp, Vv, =(x%y+y7), =x>+3y°.

From the Cauchy-Riemann equations
{ = vy {3x2+y2—x2+3y2 {xz_y2 {xzo

u =y’ 4xy:O’

y X
Given function is analytic at origin.
Example 12
(a) Prove that v = x* — y* + 2x + 1 is harmonic;
(b) Find u(x, y) suchthat f(z)=u +iv is analytic.

2xy =—2xy

Solution
() v, =2x+2, v, =—2y.
"o /A
Ve =2, Vyy, =—2.
2 2

Adding v, and v}, yields 6_v2+ 0 Z =0 and v is harmonic.

ox~ 0dy
(b) From the Cauchy-Riemann equations

u, = v; =2y,
u; =—v =-2x-2.

Integrate u; with respect to y, keeping x constant. Then
u :f(—2x—2)dy: —2xy—2y+ F(x),

where F(x) is an arbitrary real function of x.

y=0

Substitute —2xy —2y + F(x) into u. =-2y and obtain —2y+ F'(x)=-2y or

F'(x)=0 and F(x)=c, aconstant. Then, u(x,y)=—2xy —2y +c.

Example 13 Find a coefficient of expansion and the rotation angle at this point when mapping

w=u(x,y)+iv(x,y):
u(x,y)=3x"y—y>, v(x,y)=3x"-x, zg=1—1.
Solution

From the Cauchy-Riemann equations
ul = v; = 6xy,
u’y =—v = 3x? —3y7,
for all points of the complex plane. Then
@) =ug +ive=v,(x,p) —iuy (x,9),
f(z)= u; + iv; = 6xy + i(3y2 — 3x2)

and find the value of the set point z, =1—1

18



£l =(6xy +i(3y* 3x2))‘x_1 — 6.
y=—I1
A coefficient of expansion equals modulus of a complex number f'(1—i)=—6+0i,

-6+ 0i|=+/36+0=6.

The rotation angle equals the argument of /(1 —i)=—6+0i

argz =@ =arctlg——=rmr.
Exercise Set 3
In Exercises 1 to 6 find out which of the following functions are analytic at least at one point

1. w=icosz. 2.w:‘z‘-Rez. 3. w=z-Imz.
4.w:Z:. 5. w=(Q2+5i)z—iz*+3i. 6. w=03+4i)z>+7iz+6.
z l

In Exercises 7 to 12 prove that given function is harmonic. Find u(x, y) or v(x, y) such that
f(z)=u+1iv is analytic.

Tou=———+x, f()=2. 8 u—l—c'siny, f(0)=1+i.
Xty

10. v=3x%y—)°, f(0)=1. 9. u=eYcosx+x, f(0)=1.

M. u=3x>y—)°, f1—i)=0. 12. v:—eHysinx,f[%—i—i]:O.

In Exercises 13 to 16 find a coefficient of expansion and the rotation angle at this point when
mapping
13, u(x,y)= x> +2x— y*, v(x,y) =2xy +2y, z, =1i.
o
14, u(x,y):x3 —?)xy2 + x? —y2, v(x,y):?wczy—y3 +2xy, 2 :?l.
15. u(x,y) = x> —=3xp> +3x, v(x,y)=3x>y— > +3y—1, zo=—1+1.

16 u(x,y)=eeosx, v(x.y)=—c"sinx, z="+i.

3.2 Differentials. Rules for Differentiation. Derivatives of Elementary Functions

Let Az =dz be an increment given to z. Then
Aw= f(z+Az)— f(2) (1)
is called the incrementin w= f(z).If f(z) is continuous and has a continuous first derivative
in a region, then

Aw= f'(2)Az + ez (2)
where ¢ — 0 as Az — 0. The expression
dw= f'(z)dz (3)

is called the differential of w or f(z), or the principal part of Aw. Note that Aw=dw in
general. We call dz the differential of z.

19



Suppose f(z), g(z) are analytic functions of z. Then the following differentiation rules
(identical with those of elementary calculus) are valid.

/
1. (f:l:g) =f'+g.
2. (cf )' =c¢f’ where ¢ is any constant.

3. (fg) = fe+g7f.

4.[i :f‘/g;zg/f if ¢(2)=0.

g g

5. (f(2()) = f1 -2

6.1f z= f(¢) and w= g(¢) where ¢ is parameter, then w’ :%.

In the following, we assume that the functions are defined as in Chapter 2.2.2. In the cases
where functions have branches, i.e., are multi-valued, the branch of the function on the right is
chosen so as to correspond to the branch of the function on the left. Note that the results are
identical with those of elementary calculus.

1. (¢) =0. 2. (2" =nz""".
3. (e7) =¢". 4. (a") =a"Ina.
5. (lnz)’:l. 6. (log,z)' = .
z zlna
7. (sinz) =cosz. 8. (cosz) = —sinz.
9. (tgz) = 12 . 10. (ctgz)' = ———.
cos” z sin” z
11. (arcsinz)' = ! . 12. (arccosz)' = — ! .
1— 22 1— 22
13. (arctgz)' = 1 > 14. (arcctgz) = — 1 =
14z 14z
15. (shz) =chz. 16. (chz) =shz.
1 1
17. (thz) = : 18. (cthz) =-
(thz) ch?z ( ) sh? z

3.3 Higher Order Derivatives. L’Hospital’s Rule. Singular Points

If w= f(z) is analytic in a region, its derivative is given by 7'(z), w' or c;—w If £'(z) is
Z

2
also analytic in the region, its derivative is denoted by f”(z), w”, or fl—zv Similarly, the
z
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"w

n - th derivative of f(z), if it exists, is denoted by 7 (z), w'™, or c;—n where 7 is called
Z

the order of the derivative. Thus derivatives of first, second, third, ... orders are given by f'(z)

, 1"(2), ... . Computations of these higher order derivatives follow repeated application of the

above differentiation rules.
One of the most remarkable theorems valid for functions of a complex variable and not nec-
essarily valid for functions of a real variable is the following:

THEOREM 1 Suppose f(z) is analytic in a region R . Then so also are ”(z), 1"(2), ...
analyticin R, i.e., all higher derivatives existin R .
Let f(z) and g(z) be analytic in a region containing the point z, and suppose that

f(zy)=g(z,) =0 but g’(z,) = 0. Then, L'Hospital's rule states that
/
lim f(2) _ f/(Zo) (1)
-2 g(z)  g(z)
In the case of f/(z,)=g'(z,) =0, the rule may be extended.

We sometimes say that the left side of (1) has the “indeterminate form” 0 , although such

terminology is somewhat misleading since there is usually nothing indeterminate involved. Limits

represented by so-called indeterminate forms 2] (0-00), (00 —o0) and (loo) can often
6.9

be evaluated by appropriate modifications of L’'Hospital’s rule.
A point at which f(z) fails to be analytic is called a singular point or singularity of £(z).

Various types of singularities exist.

1. Isolated Singularities. The point z = z,, is called an isolated singularity or isolated sin-
gular point of f(z) if we can find 6 > 0 such that the circle \z — zo\ = ¢ encloses no singular
point other than z,, (i.e., there exists a deleted 6 neighborhood of z, containing no singularity).
If no such 6 can be found, we call z, a non-isolated singularity.

If z, is nota singular point and we can find 6 > 0 such that |z — zy| = 6 encloses no singular
point, then we call z,, an ordinary point of f(z).

2. Poles. If z, is an isolated singularity and we can find a positive integer » such that

lim(z—z,)" f(z)=A=0, then z=z, is called a pole of order n. If n=1, z, is called a

Z—>ZO
simple pole.

3. Branch Points of multiple-valued functions, already considered in Chapter 2.2.2, are non-
isolated singular points since a multiple-valued function is not continuous and, therefore, not
analytic in a deleted neighborhood of a branch point.

4. Removable Singularities. An isolated singular point z, is called a removable singularity

of f(z) if lim f(z) exists. By defining f(z,)= lim f(z), it can then be shown that f(z)
Z—>ZO

z—2Z

is not only continuous at z, but is also analytic at z .
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5. Essential Singularities. An isolated singularity that is not a pole or removable singularity
is called an essential singularity. If a function has an isolated singularity, then the singularity is
either removable, a pole, or an essential singularity. For this reason, a pole is sometimes called
a non-essential singularity. Equivalently, z = z, is an essential singularity if we cannot find any

positive integer »n such that lim (z —z,)" f(z)=4=0.

z—Z

6. Singularities at Infinity. The type of singularity of f(z) at z = oo [the point at infinity] is
the same as that of [l

w
For methods of classifying singularities using infinite series, see next chapter.

]atw:O.

Example 14 Using rules of differentiation, find the derivatives of each of the following:
(@) cos®(2z + 3i), (b) ztg(Inz), (c) (z — 31')4Z+2
Solution Using the chain rule, we have

/
(a) (cos2(2z n 3i)) — 2c08(22 + 3i)sin(2z + 31)2 = —4sin(4z + 6i) .

(b) (z- tg(In z))’ = tg(Inz) + (tg(ln z)) z=tg(lnz) +— l
cos’lnz z
(C) ((Z . 31-)424—2 )/ _ (e(4z+2)1n(z_3i) )’ _ e(4z+2)ln(z 3i), [411’1(2 _3i)+ 4z + 2
z—3i

Example 15 Suppose w* —3z*w+4Inz=0. Find i’—w
Z

Solution
Differentiating with respect to z, considering w as an implicit function of z , we have

3w — 322w/ —6zw+i: 0.

zZ
dW " 4ZW — i
Then, solving for —, we obtain =— Zz .
dz dz 3w —3z
Example 16 Evaluate
10
1=
(a) limZ6 +1, (b) lim C2OSZ.
z—i z° 41 z—0 z

Solution

(@) Let f(z)=z""+1 and g(z)=z°+1.Then f(i))=g(i)=0. Also, f(z),g(z) are
analyticat z=1.

Hence, by L'Hospital’'s rule
10+1_[0] . 102° 54_5

.z
lim < —|=1lim < = lim—
z—i z° +1 0 z—i bz z—i 3

(b) Let f(z)=1—cosz and g(z)=z>. Then f(0)=g(0)=0. Also, f(z),g(z) are
analyticat z=0.

Hence, by L'Hospital’s rule
22




lim
z—0 2z 2z-0 z 2

z—0 z

0

1—cosz [O] . sinz 1. sinz 1
= = lim =—lim =—

Example 17 (a) f(z) = : 13)4 has a pole of order 4 at z =3.

Z_

3z—-2 .
b = has a pole of order 2 at z =1, and simple poles at
(b) 7(2) DGt —3) p ple p

z=—1land z=4.
1

c) f(z)=(z —3)E has a branch point at z =3.
d) f(z)=In(z* +z —2) has branch points where 224z-2=0, ie, at z=1 and
z=-2.

(e) The singular point z = 0 is a removable singularity of f(z) = S since ling
z z— z

sinz
=1

1
(f) f(z)=e>"2 has an essential singularity at z =2.

(9) The function f(z) = z> has a pole of order 3 at z = oo, since f [l] = — has a pole
w w

oforder3at w=0.
Exercise Set 4

In Exercises 1 to 9 using rules of differentiation, find the derivatives of each of the following:

1. sin’(5z + 7i). 2. In(tg5z). 3. ze .
4. (z* —3z)cos4z. 5. (z+4i>i722_ 6. (22 +22)COSZ.
2 5 7
Z _3. 8. ctg” 7z . 9. alrcsin[?’z2 71].
sh2z In(z 4 3) z°+1i
10.Suppose w* —5z*w? +4sinz=0. Find %
Z
In Exercises 11 to 19 evaluate
10 2 2
1, lim= 1. 12. lim—2— 2 13. tim =2,
z—1 z° —1 z=2z"4+2z—06 z=3i z — 30
1. limCOS4Z_ZCOSZ. 15 Hml—cosz. 6. limi.
20 3z z—0 ztgz 200 72
2 . . tgz
7. tim 22 +2=4 18. lim (z— 2", 19. Tim (ctgz)™".

=0z 42 -6

4 Complex Integration and Cauchy’s Theorem. Cauchy’s Integral Formulas
4.1 Complex Line Integrals

Let f(z) be continuous at all points of a curve C [Fig.14], which we shall assume has a
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finite length, i.e., C is a rectifiable curve.
Subdivide C into n parts by means of points z,,z,,z,,...,z,_;,z,, chosen arbitrarily, and

call zy=a,b=z,.0neacharcjoining z,_, to z, [where k goes from 1 to ], choose a point
& - Form the sum

S, =)z —a)+..+ f(E)ND—z, ) (1)

oy

b

Fig.14
On writing z, —z,_, = Az, , this becomes
Sy = Zf(fk)(zk —Zp)= Zf(gk)AZk (2)
k=1 k=1

Let the number of subdivisions » increase in such a way that the largest of the chord lengths
Az, approaches zero. Then, since f'(z) is continuous, the sum S, approaches a limit that

does not depend on the mode of subdivision and we denote this limit by
b
[r@d o [ f(z)a (3)
a C

called the complex line integral or simply line integral of f(z) along curve C, or the definite
integral of f(z) from a to b along curve C. In such a case, f(z) is said to be integrable
along C. If f(z) is analytic at all points of a region R and if C is a curve lying in R, then
f(2) is continuous and therefore integrable along C.
Suppose f(z) =u(x,y)+iv(x,y). Then the complex line integral (3) can be expressed in
terms of real line integrals as follows
fﬂ@@:f@@w+quMa+ww:
v Y
= f(u (x,y)dx — v(x,y)dy) —I—if(v(x, y)dx —u(x,y)dy) (4)
Y Y

For this reason, (4) is sometimes taken as a definition of a complex line integral.
Suppose f(z) and g(z) are integrable along C. Then the following hold:

Properties of the Integral

Lfﬂ@&:—fﬂ@&.
C C
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2. jf(z)dz = ]f(z)dz +]f(z)dz,c eC.
3, f (f(2)+ g(2))dz = f f(2)dz + f o(2)dz .
C C C

4, [ Af (2)dz = A [ f(2)dz, A= const.

— t R ) ) )
Let z:z(t),{x x((t)) a<t<( be a continuous function of a complex variable
y=yu),

t =u +iv. Suppose that curve C inthe z plane corresponds to curve C’ in the z plane and
that the derivative z'(¢) is continuous on C”’. Then

B
[ r@dz= [ f@)-Z0d= [ )7 0)d (5)
C @ c’

These conditions are certainly satisfied if z is analytic in a region containing curve C’.

Example 18 Evaluate f zdz from z=0 to z=4+42i along the curve C given by:
C

(@) z=t*+it, (b)theline from z=0 to z=2i.

Solution

(a) The points z=0 and z=4+2i on C correspond to =0 and ¢ =2, respectively.
Then, the line integral equals

j(rz _it)d(fz +i’):j(t2 _i’)<21+i)df= ](2t3 —it? +t)dt: 10—%.
0 0 0

(b) The given line integral equals

f(x — iy)(dx + idy) = fxdx + ydy + ifxdy ~ ydx.
C C C
The line from z =0 to z =2 is the same as the line from (0, 0) to (0, 2) for which x =0,
dx =0 and the line integral equals

2 2 2
fydy+if0dy:fydy:2.
0 0 0

A region R is called simply-connected if any simple closed curve, which lies in R, can be
shrunk to a point without leaving R . A region R , which is not simply-connected, is called mul-
tiply-connected.

For example, suppose R is the region defined by |z| < 2 shown shaded in Fig.15. If " is
any simple closed curve lying in R [i.e., whose points are in R ], we see that it can be shrunk
to a point that lies in R, and thus does not leave R, so that R is simply-connected. On the

25



other hand, if R is the region defined by 1< \z\ < 2, shown shaded in Fig.16, then there is a

simple closed curve I' lyingin R that cannot possibly be shrunk to a point without leaving R ,
so that R is multiply-connected.

Intuitively, a simply-connected region is one that does not have any “holes” in it, while a mul-
tiply-connected region is one that does. The multiply-connected regions of Figs.15 and 16 have,
respectively, one and three holes in them.

W W L

Fig.15 Fig.16 Fig.17

Any continuous, closed curve that does not intersect itself and may or may not have a finite
length, is called a Jordan curve. An important theorem that, although very difficult to prove,
seems intuitively obvious is the following.

Jordan Curve Theorem. A Jordan curve divides the plane into two regions having the curve
as a common boundary. That region, which is bounded [i.e., is such that all points of it satisfy
\z\ < M where M is some positive constant], is called the interior or inside of the curve, while
the other region is called the exterior or outside of the curve.

Using the Jordan curve theorem, it can be shown that the region inside a simple closed curve
is a simply-connected region whose boundary is the simple closed curve.

The boundary C of a region is said to be traversed in the positive sense or direction if an
observer travelling in this direction [and perpendicular to the plane] has the region to the left.
This convention leads to the directions indicated by the arrows in Figs.15, 16, and 17. We use
the special symbol

9§ f(2)dz
C

to denote integration of f(z) around the boundary C in the positive sense. In the case of a

circle [Fig.15], the positive direction is the counterclockwise direction. The integral around C is
often called a contour integral.
Let f(z) be analytic in a region R and on its boundary C. Then

$ f(z)dz=0 (6)
C

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theo-
rem, is valid for both simply- and multiply-connected regions. It was first proved by use of Green’s

theorem with the added restriction that f/(z) be continuous in R .
Let f(z) be continuous in a simply-connected region R and suppose that
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9§ f(2)dz=0
C

around every simple closed curve C in R . Then f(z) is analyticin R .

This theorem, due to Morera, is often called the converse of Cauchy’s theorem. It can be
extended to multiply-connected regions. For a proof, which assumes that f’(z) is continuous
in R.

Example 19 Evaluate fﬁ
C

dz where C is any simple closed curve C and z =« is (a) out-
—da

z

side C, (b) inside C.
Solution

(a) If a is outside C, then f (z):L is analytic everywhere inside and on C'. Hence,
zZ—da

dz

Z_

by Cauchy’s theorem 9§ =0.
a
C

(b) Suppose « is inside C and let I be a circle of radius e with center at z=a sothat I"
is inside C (this can be done since z = a is an interior point).

e g
I

C

Now on T', [z—a|=¢ or z—a=ce", ie, z=a+ee'?,0<p<2m. Thus, since

dz=ice'?dy, the right side of (7) becomes
27

. i 21
flgel.d‘p:ifdwzzm'
0 ee’” 0

which is the required value.
Suppose f(z) and F(z) are analytic in a region R and such that F'(z) = f(z). Then
F(z) is called an indefinite integral or anti-derivative of f(z) denoted by

F(z)= f f(z)dz+C (8)

Just as in real variables, any two indefinite integrals differ by a constant. For this reason, an
arbitrary constant C is often added to the right of (8).

Table of Indefinite Integrals

n+l d
fz”dz:z n=—1. % iz
n+1 z
(12 z z
‘dz = . e“dz=¢".
fa i Ina f
fcoszdz:sinz. fsinzdz:—cosz.
dz dz
=tgz. =—ctgz.
fcoszz fsin2z

27



z—a
zZ4+a

n|z -+ 22 +4a°

f dz —Lln
22 —a’> 2a

ILZI
. \/22 +q?
dz

f 2dZ 2 :larctgi. f—:arcsini.
z"+a a a \/ﬁ a
fshzdzzchz. fchzdzzshz.
Example 20 Determine
(a) fsinz sin3z sin2zdz, (b) fzz 44 dz
Solution

L : 1 :
(a) f sinzsin3zsin2zdz = 5 f (cos2z —cos4z)sin2zdz =

1 : 1 : 1 . 1 : :
—5fcos2251n2zdz—Efcos4zsm2zdz —Zfs1n4zdz—Zf(s1n6z—s1n2z)dz—

cosd4z cosbz cos2z
=— + — +C.
24 8

16
NS 4+Z3dZ:%f(4—i—Z3>;(4+Z3)/dz:§f<4—l—z3);d(4—|—z3):

:§(4+z3)2 +C:§\/(4—i—z3)3 +C.

THEOREM Suppose a and b are any two points in R and F'(z) = f(z). Then

b
[ 1@)dz=Fp)-F(a). 9)
This can also be written in the form, familiar from elementary calculus

b
f F(2)dz = (F(2)), = F(b) ~ F(a). (10)

2

Example 21 Calculate 7 = f zlnzdz .

Solution Using the formula for integration by parts we get

dz

u=Inz, du=— 2 2 e?
z z2 22dz ¢ e’ z2

= > |=|%nz —f _C o A =

z 2 2z 2 2 4

dv=zdz, v=— e e e
2

2 4 2

:e4—e——e—+e—=1(364—ez)z39,10.
2 4 4 4

THEOREM Let f(z) be analytic in a region bounded by two simple closed curves C and
28




C, [where G lies inside C as in Fig.18(a)] and on these curves. Then

ji f(2)dz = 9§ f(2)d=
C G

where C and C, are both traversed in the positive sense relative to their interiors [counterclock-
wise in Fig.18(a)].

The result shows that if we wish to integrate f(z) along curve C, we can equivalently re-
place C by any curve C, so long as f(z) is analytic in the region between C and C; as in
Fig.18(a).

THEOREM Let f(z) be analytic in a region bounded by the non-overlapping simple closed
curves C,C,,C, ,...,C, where C,,...,C, are inside C [as in Fig.18(b)] and on these curves.
Then

ff f(2)dz = 9§ f(2)dz + 55 f(2)dz + 9§ f(2)dz 4.t 9§ f(2)dz.
C G G, G C,

f.,,;\}
L o

e

Fig.18

Exercise Set 5

In Exercises 1 to 9 evaluate
2

1. 7(23 %—Z)ez2 dz .

1+i

2. fzsinzdz.
0
3. [(3-22+sinz)dz, y:(|z|=2,Im z>0).

gl
4. f(z3—i—cosz)dz, 7:(‘2‘21,R€220).

y

5. fzcoszdz.
0

6. f(322+22) dz, v— theline from z=1—i to z=2i.
Y
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7. f(siniz—l—z)dz, 7:(‘2‘:1, RezZO).
v
8. fz-?dz, ’y:(‘z‘zl, ImZSO).

Y
9. f?zdz, ~ — the line from z=0 to z = 2i.
Y

In Exercises 10 to 18 determine

dz dz
si "N | ———-
10.f sinzcoszdz. fsin2(1—3z) 12.f

272 1 6z4+4

2dz dz 2
13_fm, 14.fcosz(3z+2). 15.fz3e dz .

16. f(Szz +1)e_2z dz . 18. fsin7zcosszdz.

dz
17, | ——.
fl—i—\/z—|—3

4.2 Cauchy’s Integral Formulas

Let f(z) be analytic inside and on a simple closed curve C and let a be any point inside
C [Fig.19]. Then
L A CI
2mi L Z—a

/(@) (1)

where C is traversed in the positive (counterclockwise) sense.
Also, the n-th derivative of f(z) at z = a is given by

iy, 1! f(2) .
S (a)_ZﬂiC(z—a)"“d’ n>1 (2)

The result (1) can be considered a special case of (2) with n = 0 if we define 0!=1.

C

Fig.19

The results (1) and (2) are called Cauchy’s integral formulas and are quite remarkable be-
cause they show that if a function f(z) is known on the simple closed curve C, then the values

of the function and all its derivatives can be found at all points inside C. Thus, if a function of a
complex variable has a first derivative, i.e., is analytic, in a simply-connected region R, all its
higher derivatives exist in R . This is not necessarily true for functions of real variables.

The following is a list of some important theorems that are consequences of Cauchy’s integral
formulas.

1. Morera’s theorem (converse of Cauchy’s theorem)
30



If £(z) is continuous in a simply-connected region R and if 9§ f(z)dz = 0 around every
C
simple closed curve C in R, then f(z) is analyticin R .

2. Liouville’s theorem
Suppose that for all z in the entire complex plane, (i) f(z) is analytic and (i) f(z) is

bounded, i.e., | f(z)|< M for some constant M . Then f(z) mustbe a constant.

3. Fundamental theorem of algebra

Every polynomial equation P(z)=a, +a;z + a,z* +...+a,z" =0 with degree n>1
and a, = 0 has at least one root.

From this it follows that P(z) =0 has exactly » roots, due attention being paid to multiplic-

ities of roots.
4. Gauss’ mean value theorem
Suppose f(z) is analytic inside and on a circle C with center at @ and radius ». Then

f(a) is the mean of the values of f(z) on C, i.e.,

27
() =$ [ fla+re®)dy )

5. Maximum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and is not identically equal

to a constant. Then the maximum value of | /(z)| occurs on C.

6. Minimum modulus theorem
Suppose f(z) is analytic inside and on a simple closed curve C and f(z) =0 inside C.

Then | /'(z)| assumes its minimum value on C.

7. The argument theorem
Let f(z) be analytic inside and on a simple closed curve C except for a finite number of

poles inside C. Then
/
S @)y n_p %)

where N and P are, respectively, the number of zeros and poles of f(z) inside C.
Example 22 Evaluate

. 2 2 2z
(a) fﬁsmm reosmz (b) fﬁ © -dz where C is the circle |z|=3.
(z—1D(z-2) . (z+1)
Solution (a) Since ! L , We have

(z—1)(z-2) z—2 z—1

sinmz? + cosmz> sinmz? + cosmwz’ sinz? + cos 7wz’
dz = dz —
c c

(z—=1(z—-2) (z—2) (z=1

By Cauchy’s integral formula with @ =2 and a =1, respectively, we have
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fﬁ sinz? + coswz?
S G-DE-2)

. 2 2
fﬁ sinmz” + cosmzdz _ 27ri<sin 2% + cosw22) =2,
c

(z—2)
. 2 2
fﬁ sinmz” +cosmzdz _ 27ri(sin m1? + cos 712) = —27i,
A (z—=1

since z=1 and z =2 areinside C and sinmz> + cosmz> is analytic inside C. Then, the
required integral has the value 27 —(—2mi) =4i.

(b) Let f(z) =e** and a =—1 in the Cauchy integral formula
() ¢\ — n! /(2 d 1
f@=— f<z_a)"+1 z. ("
If n=23 then f'(z)=2¢%, f"(z)=4¢e*", f"(z)=8¢e** and f"'(—1)=8e *. Hence
(1) becomes

., 3! e’
e 2 = dz
2mi 55(24—1)4
2

from which we see that the required integral has the value Bmie_ :
Exercise Set 6
In Exercises 1 to 12 evaluate
2 4 3
1_% 3z +2Z+42dz_ ) 3z —242 +5
1 2 :
| z+1]=3 (z Jr4)-s1n2 12 z
1 cos’z+1 dz
LU A z(z—m) |Z|:4(Z +9)(z+9)
d
d. 95. Z3Z : 6. szzi, 'y:[‘z—l—i‘zé].
PRCEINCE) 2z 4
. s
3z42 CcoOsS—z
/. SE SNPZT gy 4
2, 8. —F—dz.
12500 7 (z—m) | f; 1(22_1)2
0§ —= 4. 10, Erm
A Z 2243 I isin
e'?—1 2+sinz
1. dz. 12. —d.
|§|i1 = HazE+2D)
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5 Infinite Series Taylor's and Laurent’s Series. The Residue Theorem
Evaluation of Integrals

5.1 Series of Functions. Power Series. Taylor’s Theorem

From the sequence of functions {u,,(z)}, let us form a new sequence {S,(z)} defined by
S1(z2)=u(2),
$5(2) =1 (2) +u(2),
§3(2) =uy(2) +uy(2) +u3(2),

S,(2) =u(2) +uy(2) +u3(2) + .1, (2) =D u,(2),
i=1
where S, (z), called the »-th partial sum, is the sum of the first n terms of the sequence
{u,(2)}.
The sequence {S,(z)} is symbolized by

ul(z)—i—uz(z)—l—u3(z)+...—|—un(z)—i—...:iun(z) (1)
n=l

called an infinite series. If lim S,(z) = S(z), the series is called convergent and S(z) is its

n—oo

sum; otherwise, the series is called divergent. We sometimes write Z“n (z) as Zun(z) or

n=l1
> u, for brevity.
As we have already seen, a necessary condition that the series (1) convergesis lim a, =0

n—oo

, but this is not sufficient.
If a series converges for all values of z (points) in a region R, we call R the region of
convergence of the series.

A series Zun(z) is called absolutely convergent if the series of absolute values, i.e.,

n=l

iﬁtn (z)|, converges.
n=1

If > "u,(z) converges but > "|u,(z)| does not converge, we call Y “u,(z) conditionally

n=l n=l n=l
convergent.
A series having the form

Zan(z —a)'=ay+a(z—a)+a(z—a) +..+a,z—a)" +.. (2
n=0
is called a power series in z — a . We shall sometimes shorten (2) to Zan (z—a)".

Clearly the power series (2) converges for z = a, and this may indeed be the only point for
which it converges . In general, however, the series converges for other points as well. In such
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cases, we can show that there exists a positive number R such that (2) converges for
|z—a| < R and diverges for |z — a|> R, while for |z — a|= R, it may or may not converge.

Geometrically, if I is a circle of radius R with center at z = a , then the series (2) converges
at all points inside I" and diverges at all points outside I", while it may or may not converge on
the circle I". We can consider the special cases R =0 and R = oo, respectively, to be the
cases where (2) converges only at z = a or converges for all (finite) values of z . Because of
this geometrical interpretation, R is often called the radius of convergence of (2) and the corre-
sponding circle is called the circle of convergence.

For reference purposes, we list here some important theorems involving sequences and se-
ries. Many of these will be familiar from their analogs for real variables.

THEOREM 1 Let u,, = a, +ib,, where a, and b, arereal. Then, a necessary and sufficient

condition that {u, } converges is that {a, } and {5, } converge.
THEOREM 2 A necessary condition that Zun converges is that lim «, = 0. However,

n—oo

the condition is not sufficient.

THEOREM 3 Multiplication of each term of a series by a constant different from zero does
not affect the convergence or divergence. Removal (or addition) of a finite number of terms from
(or to) a series does not affect the convergence or divergence.

THEOREM 4 A necessary and sufficient condition that > ~(a,, + ib, ) converges, where a,
and b, arereal,isthat » "a, and > b, converge.
THEOREM 5 If Z|un| converges, thenZun converges. In words, an absolutely conver-

gent series is convergent.

THEOREM 6 The terms of an absolutely convergent series can be rearranged in any order
and all such rearranged series converge to the same sum. Also, the sum, difference, and product
of absolutely convergent series is absolutely convergent.

THEOREM 7 (Comparison tests)

(a) If > "|v,| converges and |u, |<|v,|, then > "u, converges absolutely.
(b) If > "|v,| diverges and |u,|>|v,|, then > "|u,| diverges but > "u, may or may not
converge.

un—i—l

uy,

and diverges if L >1.If L =1, the test fails.
THEOREM 9 (n-th Root test) Let lim #/ju,|=L. Then > "u, converges (absolutely) if

n—oo

THEOREM 8 (Ratio test) Let lim

n—oo

= L. Then Z u, converges (absolutely) if L <1

L <1 anddivergesif L>1.If L=1, the test fails.
THEOREM 10 (Integral test) If f(x)>0 for x > a, then Z f(n) converges or diverges

M
accordingas lim f f(x)dx converges or diverges.
M—o

THEOREM 11 A power series converges uniformly and absolutely in any region that lies en-
tirely inside its circle of convergence.
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THEOREM 12 (a) A power series can be differentiated term by term in any region that lies
entirely inside its circle of convergence.

(b) A power series can be integrated term by term along any curve C that lies entirely inside
its circle of convergence.

(c) The sum of a power series is continuous in any region that lies entirely inside its circle of
convergence.

Example 23 Find the region of convergence of the series Z<n+—2>

Solution
(Z—l— 2)1171
given series converges, we have

(Z + 2)"

Ifu =
u 4I’l+1 (n_|_2)

n

then u

il = . Hence, excluding z = —2 for which the

\(z+2) n+1°| \z+2\
Ho\ 4 (+2?| 4

un—l—l

u,

lim

n—oo

2
Then the series converges (absolutely) for ‘ : ‘ <1,ie, \z + 2\ < 4. The point z =

is included in |z + 2| < 4.

If M =1,ie., |z+2|=4, the ratio test fails. However, it is seen that in this case

\1<L

4” (n—l—l‘ 4n+17 " 0

and since Z% converges [« series with o = 3], the given series converges (absolutely).
n

It follows that the given series converges (absolutely) for \z - 2\ < 4. Geometrically, this is

the set of all points inside and on the circle of radius 4 with center at z = —2, called the circle
of convergence [shown shaded in Fig.20]. The radius of convergence is equal to 4.

Fig.21
Let f(z) be analytic inside and on a simple closed curve C.
f@=r@+f'@ c-a+L2 (z—a) +.. ()

This is called Taylor's theorem and the series (3) is called a Taonr series or expansion

for f(z).

(n)
(z —a)2+...+f ()
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The region of convergence of the series (3) is given by \z— a\ < R, where the radius of
convergence R is the distance from a to the nearest singularity of the function f(z). On
\z — a\ = R, the series may or may not converge. For \z — a\ > R, the series diverges.

If the nearest singularity of f(z) is at infinity, the radius of convergence is infinite, i.e., the

series converges forall z. If @ =0 in (3), the resulting series is often called a Maclaurin series.
The following list shows some special series together with their regions of convergence. In

the case of multiple-valued functions, the principal branch is used.
2 3 n

¢ =1+z+=++.. + [t L |zl < oo
2! 3!
3 5 2n—1
Sinz:z—Z——l—Z——...-I—(—l)n_1 z + .,|Z|<OO.
31 5 (2n—1)!
2 4 2n—2
cosz=l-4Z 4yt 7| < o0
21 4 (2n—2)!
=l+z+22 4.4+ + 7 <1
—Z
22 7 1 2"
In(l+z)=z——+——..+(=D""—+.., |7<I.
2 3 n
(l—i—z)a:1—|—ozz—i—a(a—'_l)zz+...+a(a_1)"'(?_n+l)z”+...,|Z|<1.
. n.

5.2 Laurent’s Theorem. Classification of Singularities
Let C, and C, be concentric circles of radii R, and R,, respectively, and center at a

[Fig.22]. Suppose that f'(z) is single-valued and analyticon C; and C, and, in the ring-shaped
region R [also called the annulus or annular region] between C; and C, , is shown shaded in
Fig.22. Let a+ A be any pointin R . Then we have

f(a—l—h):ao+alh+...+%+%+... (1)
where
S (2)
271'1 9&1 "“ nz0,
a_, :ﬁc (Z—a) - f(z)dz,nZl (2)
1

C, and C, being traversed in the positive direction with respect to their interiors.
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Fig.22

In the above integrations, we can replace C; and C, by any concentric circle C between
C, and C, . Then, the coefficients (2) can be written in a single formula,

1 /(@)
= dz, Z 3
Jap e S .

n- .
271

With an appropriate change of notation, we can write the above as

a

f(D)=ay+a(z—a) +ay(z—a) + ..+ =4 221
z—a (z—a)

(4)
where
= 1_ A0 rdt, neZ (5)
27i <, (t—a)"™
This is called Laurent’s theorem and (1) or (4) with coefficients (2), (3), or (5) is called a
Laurent series or expansion.

The part a, + a,(z — a) + a,(z — a)* + ... is called the analytic part of the Laurent series,

while the remainder of the series, which consists of inverse powers of z — a, is called the prin-
cipal part. If the principal part is zero, the Laurent series reduces to a Taylor series.
It is possible to classify the singularities of a function f(z) by examination of its Laurent

series. For this purpose, we assume that in Fig.21, R, =0, sothat f(z) is analytic inside and
on C except at z=a, which is an isolated singularity. In the following, all singularities are

assumed isolated unless otherwise indicated.
1. Poles. If f(z) has the form (4) in which the principal part has only a finite number of terms

given by

a_, a_, a_,
+ s+t -
z—a (z—a) (z—a)
where a_, =0, then z = a is called a pole of order n. If n =1, itis called a simple pole.
If £(z) hasapole at z=a, then lim f(z) =o00.

zZ—a

2. Removable singularities. If a single-valued function f(z) is not defined at z = a but
lim f'(z)exists, then z = a is called a removable singularity. In a such case, we define f(z)

z—da

at z=a asequalto lim f(z),and f(z) will then be analytic at .

zZ—a
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sin z

Example 24 If f(z) = , then z =0 is a removable singularity since f(0) is not de-

fined but lim M2 | Wedefine £(0)= lim 2 _ 1. Note that in this case
z— zZ z— z
sinz 12,2 ey e i s
:  z|_ 31 5 2n—1)! 30 s

3. Essential singularities. If f(z) is single-valued, then any singularity that is not a pole or

removable singularity is called an essential singularity. If z = a is an essential singularity of
f(2), the principal part of the Laurent expansion has infinitely many terms.

1
Example 25 Since e~ :1+l+ ! 5+ ! 3
z 2z 3z
4. Branch points. A point z = z, is called a branch point of a multiple-valued function f(z)
if the branches of f(z) are interchanged when z describes a closed path about z, . A branch
point is a non-isolated singularity. Since each of the branches of a multiple-valued function is

analytic, all of the theorems for analytic functions, in particular Taylor's theorem, apply.
1

Example 26 The branch of f(z)= 22 , Which has the value 1 for z =1, has a Taylor series

+..., z=0 is an essential singularity.

of the form ay, +a,(z—1)+a,(z —1)* +... radius of convergence R =1 [the distance from
z =1 to the nearest singularity, namely the branch point z=0].
5. Singularities at infinity. By letting z = L in f(z), we obtain the function £ [l] = F(w)
w w
. Then the nature of the singularity for f/(z) at z = oo [the point at infinity] is defined to be the
same as that of F'(w) at w=0.

Example 27 f(z) =z’ has a pole of order 3 at z = oo, since f[i] =F(w)= % has
w w
a pole of order 3 at w= 0. Similarly, /(z) =" has an essential singularity at z = oo, since

1
f [l] = F'(w)=e" has an essential singularity at w=0.
w

Example 28 Find Laurent series about the indicated singularity for each of the following func-
tions:
2z :
€ zZ—SInz 1
a)——.,z=1; (b ,z=0; C) ——,
()(2—1)3 (b) 3 ()22(2_3)2 z
Name the singularity in each case and give the region of convergence of each series.
Solution
(a) Let z—1=u.Then z=u+1 and
2z ZLH—Z 2 2 (2”)2
|

e e e o, ©
= =—e" =—|14+2u+
(z—1)° u’ u’ u’

) 4
@, ut
3! 4!

_|_
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e’ 2¢? 2¢? 4e?  2¢?

— + + + + z—1)+....
z-1> (z-1D* (-1 3 3( )
z =1 is a pole of order 3, or triple pole.
(b)
SN RSO
z—sinz 3151 7 {2 22 7 22 7
T = 3 e e I e i
z z z7 |3 5 7! 357
z =10 is a removable singularity. The series converges for all values of z.
(c) Let z—3 =u. Then, by the binomial theorem,
1 B 1 B 1 B
2 27 .2 2 2
-3 3
T T
3
2 3
1 —2)(-3 —2)(—3)(—4
:_21+(_2)[z]+( X )[z L (23) )[g] L
3 2! 3 3! 3
1 2 1 4 | 2 1 4
=— -t oo ut.= 5= +————(z-3)+....
ou? 27u 27 243 9(z—3)> 27(z—3) 27 243
z =13 is a pole of order 2 or double pole.
Example 29 Expand f(z) = 1 in a Laurent series valid for:
(z+1D(z+3)
(@) 1<|z|<3, (b)|z|>3, (c)o<|z+1<2, (d)|z|<1.
Solution
(a) Resolving into partial fractions,
! SRS S
z+D)(z+3) 2 z+1 2 z+43
”|4:>L
Lo _L[l_l+L_L+L+ ]_L_L 1
2(z+1) 2Z[1—|—l] 2z z 22 2 AT 2z 222 27
z
|fk+<3,
1 | | z ¢ 7 1z 2 7
=—|l-ct+—— . |=— = ..
3 9 27 6 18 54 162

2(Z—|—3):6[1+Z] 6
3

Then, the required Laurent expansion valid for both |z|>1 and |z| <3, ie., 1<|z|<3,is

1 1 1 1 1 z 2 2
. Tttt —— .
2z 2z 2z 2z 6 18 54 162

(b) If |z| > 1,we have as in part (a),
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1 1 1 1

= +
20z+1) 2z 272 27

|f|z|>3,
1 1 1 3 9 27 81 1 3 9
2(z+3) 2z[1+3] 2z z z¢ 7z z 2z 2z° 2z
z

Then, the required Laurent expansion valid for both |z|> 1 and |z|> 3, i.e., [z[> 3, is
1 4 13 40

22 2 2

(c) Let z+1=u.Then

I S L[l_zﬁf
(z+D)(z+3) u@+2) 2u[1+“] 2u

1 11 1 ) .
— —+—(z+D)——(z+D"+...,validfor 0< |z +1|< 2.
TR G A Chl) |z +1]
(d)|f|z|<1,
1 1

= :l(l—z—l—zz—z3—|—z4—|—...):l—lz—|—lzz—lz3+....
2z+1) 2(+2) 2 2 2727 2
If |z| < 3 ,we have by part (a),

1 1 z 22 7
-4
2z4+3) 6 18 54 162

Then the required Laurent expansion, valid for both |z| <1 and |z| <3, i.e., |z|<1, is by
subtraction

1 4 13 , 40 ,
+—z"——z
39 27 81

This is a Taylor series.

Exercise Set 7
In Exercises 1 to 3 investigate the convergence of:

< ((—1)" < (cos3n  sind < (1 -1
1.2[( ) +i3in. 2 Z[C°s3"+sm4”-i]. 3 Z[—2+ L ]
n=1 n=1

n n n

In Exercises 4 to 7 find the region of convergence of:

< n+1 N ~(m+D!(4+30)" ,
4. 24 i) 5.
nz::l % (z=2+i) 2 Qnt+D)!
> 3 ‘|‘2 A7 x
6 oz r2-i) 7.5 8 D 5y
n—0(1+l 3 n:O(4+l)
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In Exercises 8 to 13 expand f(z) in a Laurent series valid for given K :

1
8. — , K:2<|z|<3;
TO= e -
9 f(z)—i K:0<|z=2|<1;
' 22—3Z—|—2, . ’
2
10. = , K:3<|z—1|<+0o0;
S EO= TG | 21| < oo
+2
1. f(z :Z—, K:2<|z4+2|<4;
/@) 22—|—2Z—8 ‘ ‘
2z+3
12. f(2)=—="2  K:l<|z|<2:
/) 22+3z+2 ‘ ‘
13 f(z)—A K:|z—1|<2
. 22—3z+2, ' '

In Exercises 14 to 19 expand each of the following functions in a Laurent series at given point
14 f(2) =22, 2 =00 16, f(2)=sin——, z=1
-

z

z

I z _z
1. f(z)=cos 5+ — % =0, 17 f(z)=e*3, zy=3;

Z2 z—
z —

N Z():OO;

18. f(z):lsm22 2y =0; 19. f(z)=In
4

)
z zZ—

In Exercises 20 to 27 determine and classify all the singularities of the functions

1+cosz e T
20 == N - . = :—'.
f(2) R Zp=T 21. f(2) i 29 !
sin 4z —4z sin z
22. f(z)=——, z,=0. 23. f(@)=—F———, z,=2m.
e°—1—z z7(1—cosz)
2
—1
24. 1 (z)=cos , Zop = —T. 25. = z , Zo = —1.
f@)=cos ——. z fO=—s o %
26. f(z)= 2 1 zy=0 27. f(2)= =l . o
. 28425 424 0 . ' Csinwz 0

5.3 Residues. Calculation of Residues. The Residue Theorem.
Evaluation of Definite Integrals
Let f(z) be single-valued and analytic inside and on a circle C except at the point z =«

chosen as the center of C. Then, as we have seen in Chapter 2.5.2, f(z) has a Laurent series
about z =a given by
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0]

f(2)= Z a,(z—a)" :ao—i—al(z—a)+a2(z—a)2+,___|_ a1 9 . (1)
n=—00 z—a (z—a)
where
n=271”_gf(zj:iz>)n+ldz, neZz (2)
In the special case n = —1, we have from (2)
9§f(z)dz= 2mia_, (3)
C

Formally, we can obtain (3) from (1) by integrating term by term and using the results

d 2mi,n=1
$—= { omet 4)
c (z—a)" n=
Because of the fact that (3) involves only the coefficient a_, in (1), we call a_, the residue
of f(z)atz=a.

Res f(z)=a_, ()

To obtain the residue of a function f(z) at z = a, it may appear from (1) that the Laurent
expansion of f(z) about z=a must be obtained. However, in the case where z=a is a

pole of order &, there is a simple formula for a_ 1 given by

Res f(Z)—(k_D, lim((z — ) @) k=)
If £ =1 (simple pole), then the result is especially simple and is given by
Res f(z)=a_ =lim(z—a)f(z) (7)

which is a special case of (6) with £ =1 if we define 0!=1.

Example 30 If 7(z)= z ,
xample f(2) G DG LT}

then z=1 and z=—1 are poles of orders one

and two, respectively.

Solution
We have, using (7) and (7) with £k =2,
z ) z 1
RZe? f(z)—hm(z—l)f(z)—hm(z—l) G D) = IZIE% 11y =7
) — z _ g z _
Res /@)= gy Jm| G+ 1y zfﬂ[(z—l)]
z—1—2z 1
= lim =——.
R (Z—l) 4

If z=a is an essential singularity, the residue can sometimes be found by using known
series expansions.
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1
Example 31 Let f(z)=e¢ Z.Then, z=0 is an essential singularity and from the known

expansion for e" with u = —l, we find
z

e_i—l—l—l— -
z 2122 317

from which we see that the residue at z = 0 is the coefficient of 1 and equals —1.
z

Let 7 (z) be single-valued and analytic inside and on a simple closed curve C except at the
singularities a,b,c,... inside C, which have residues given by a_,,b_,,c_,,... [see Fig.22].
Then, the residue theorem states that

§ f(@ydz=2mi(a_ +b+e +.) (8)
C

i.e., the integral of f(z) around C is 27 times the sum of the residues of f(z) at the singu-

larities enclosed by C. Note that (8) is a generalization of (3). Cauchy’s theorem and integral
formulas are special cases of this theorem.

Fig.22
1 e’ , : :
Example 32 Evaluate — fﬁ — dz around the circle C with equation |z| =3
271 -2 (27 +2z+2)
Solution
zt
The integrand —— ¢ has a double pole at z=0 and two simple poles at
z7(z7+2z+2)

z = —141 [roots of 22 42z42= 0]. All these poles are inside C.

Residueat z=0 is
/

ezt
lim|z* —5—
Q-D! .| Z2(z*42z+2)
i (27 +2z+2)te” —e”(2z+2) t—1

z—0 (22 + 2z =+ 2)2 2
Residueat z=—1+1iis

Res f(z)=
z=0
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ezt
Res f(z)=1lim|(z—(—1+41))
z=—1+i z—0 2( + 2z + 2)
ezt z4+1—i ( 1+i)¢

= lim — Iim =
z——14+i 2 z——14+i Z +2z+ 2 4
Residueat z=—1—1i is

Res f(z)—lim[(z—(—l )

z=—1—i z—0

1
ez

(Z +2z+ 2)
ezt Z+1-|—l ( 1—i)t
= lm — lim = :
z——1-i 2 z—— l—HZ +2Z+2 4
Then, by the residue theorem

{ t | T G N G e T I R
gg € dz = 27ri[t +£ + £ _! —I—Ee*’cost.

2mid 22 (2% 4224 2) 2mi 2 4 4 2

The evaluation of definite integrals is often achieved by using the residue theorem together
with a suitable function f(z) and a suitable closed path or contour C, the choice of which may
require great ingenuity. The following types are most common in practice.

+00
1. f F(x)dx ,where F(x) is a rational function.

Consider 9§ F (z)dz along a contour C consisting of the line along the x axis from —R to
C

+R and the semicircle I" above the x axis having this line as diameter [Fig.23]. Then, let
+00
R — oo If F(x) is an even function, this can be used to evaluate f F(x)dx.

- ¢

R R

Fig.23 Fig.24
27

2. f G(sinp,cosp)dy , where G(sinp,cos) is a rational function of siny and cosy.

—1 —1

Let z=¢". Then sinp= Z_% , COSp = Z212 and dz=ie" dy or d@:ﬁ_
1 1z
The given integral is equivalent to 9§ F (z)dz where C is the unit circle with center at the origin
C

[Fig.28].
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+00
3. f F(x){c,osmx}dx, where F'(x) is a rational function.
R Sin mx

Here, we consider 9§ F(z)ei "% dz,where C is the same contour as that in Type 1.
C

400
Example 33 Evaluate f d -
0 I+x
Solution
Consider fﬁ z < Where C is the closed contour of Fig.25 consisting of the line from —R

1+z
C
to +R and the semicircle I", traversed in the positive (counterclockwise) sense.

4D

Fig.25
Mo 3w swo T 9m L
Since z®+1=0 when z;=¢®,z,=¢© ,z;=¢6 ,z,=¢ © ,zy=e 6 ,z,=¢ © |,
i 37 Smi

these are simple poles of

61+1 .Only the poles z, = ez,z2 = e?,z3 —e 6 lie within C.

Then, using L'Hospital’s rule,

i i S7i
Res f(z)= lim |z—e® z)= lim |[z—e¢e?® = lim —=—¢ ¢,
S /() [ ]f() 3 = im =
27— 6 z—e0 z—e0 z—e
n T 1 1 -
Res z)= lim |[z—e © Z)= lim |z—e © = lim —=—-¢ 2,
mf() 3mi /(@) 3mi 241 6z 6
s—c 6 z—e 6 z—e 6 sve 6
el S R e
Res z)= lim |[z—e © z)= lim |[z—e © = lm —=—e ¢ .
sm-f() Smi /(2 Smi 2% +1 ST6z0 6
s—e 6 z—e 0 z—e 0 z—e 6
Thus,
Smi 57 257
d. 1 - 1 — 1 - 2
§ Z6:27ri —e 6 4-e 2 4-¢ 6 |=
Cl—l—z 6 6 6 3
that is,
R
dx dz 27
frtesofg
7R1+x rz24+1 3

Taking the limit of both sides as R — oo
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Since

“+00

it

the required integral has the value %

Exercise Set 8
In Exercises 1 to 18 evaluate

eZ
1. ——dz.
|29|£222(z—|—1)
sinzdz
3. —.
|i3zz(z2—4)
2

5. f = —La

|=i]=32 T E

27
dt
7. | —.
»([13—5003t
27
dt
o | i
(5—4cost)

fx+4)

s L{;x 8x+20

15. .
[O(x2+4) 2(x* +16)

S 2ix

17. *e dx .
_[Ox2—10x+26

46

Z

2. —dz.
9§ \Z —|—2Z +1

z=il=l

e dz
4. —.
|Zi2 Z22(z* —9)

z
COS—
5 2 4.
PR

27

8 f dt
" (3+sinr)’

10 f x2 42
x+x+12

e foo(x2+1)

2 2ix

14.
L{;x4+10x +9

dx.

16.
foo(x2+1) 2(xr+4)

S 2 2ix

18.f il dx .

< xP+13x7 +36
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