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I FUNCTIONS OF SEVERAL VARIABLES
Functions of two variables can be visualized by means of level curves, which connect points
where the function takes on a given value. In the real world, physical quantities often depend
on two or more variables, so in this chapter we turn our attention to functions of several varia-
bles and extend the basic ideas of differential calculus to such functions.

1.1 Functions of Two Variables
Definition. A function of two variables is a rule that assigns to each ordered pair of real
numbers (x,y) in a set D a unique real number denoted by f(x,y). The set D is the domain

of f and its range is the set of values that f takes on, that is {f(x,y)|(x.y) €D}.

We often write z=f(x,y) to make explicit the value taken on by f at the general point(x,y).
The variables xand y are independent variables and z is the dependent variable. [Com-
pare this with the notation y =f(x) for functions of a single variable.]

A function of two variables is just a function whose domain is a subset of R? and whose
range is a subset of R. One way of visualizing such a function is by means of an arrow dia-
gram (see Figure 1), where the domain D is represented as a subset of the xy -plane.
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If a function f is given by a formula and no domain is specified, then the domain of 7 is un-
derstood to be the set of all pairs for which the given expression is a well-defined real number.
Definition. If fis a function of two variables with domain D, then the graph of f is the set

of all points (x,y,z) in R® such that z="(x,y) and (x,y) is in D.

Just as the graph of a function f of one variable is a curve C with equation y =f(x) so the
graph of a function f of two variables is a surface S with equation z =f(x,y). We can visualize
the graph S of f as lying directly above or below its domain D in the xy - plane (See Fig-
ure 2).
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So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contour map on which points of constant elevation
are joined to form contour curves, or level curves.

Definition. The level curves of a function f of two variables are the curves with equations
f(x,y) =k, where k is a constant (in the range of f).

A level curve f(x,y) =k is the set of all points in the domain of f at which f takes on a giv-

en value k. In other words, it shows where the graph of f has height k. You can see from
Figure 3 the relation between level curves and horizontal traces. The level curves f(x,y) =k
are just the traces of the graph of f in the horizontal plane z=k projected down to the xy -
plane. So if you draw the level curves of a function and visualize them being lifted up to the
surface at the indicated height, then you can mentally piece together a picture of the graph.
The surface is steep where the level curves are close together. It is somewhat flatter where
they are farther apart.
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Example 1. Find the domain and range of z=+9—x?—y?. Sketch the graph of
Solution. The domain of z is D = {(x,y)sg X2y > 0} = {(x,y)sx2 +y? < 9} which is the
disk with center (0,0) and radius 3 (See Figure 4.)

The graph has equation z = \/9—x2 —y2 . We square both sides of this equation to obtain

2> =9-x*—y?, or xX*+y?+2z? =9, which we recognize as an equation of the sphere with
center the origin and radius 3. But, since z>0 , the graph ofz is just the top half of this
sphere (see Figure 95).
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Functions of any number of variables can be considered. A function of n variables is a
rule that assigns a number z =f(x;,X,,...,x,) to an n-tuple (x,x,,...,x,) of real numbers. We
denote R" by the set of all such n-tuples. For example, if a company uses n different ingredi-
ents in making a food product, ¢; is the cost per unit of the ingredient, and x; units of the i-th
ingredient are used, then the total cost C of the ingredients is a function of the n variables
Xq, X0y Xp

C =1(X{,Xp,...,X) = C4Xq +CoXy + ...+ C, X,
Exercise Set 1
Find and sketch the domain of the function.

1. z=+y?—2x+4. 2. z=Inx+Incosy. 3. z=+x—4 +\/4—y2.
4. z7=\x*-3y+4. 5. z=In(x+y). 6. z=\/x2—9+\/25—y2.

1.2 Partial Derivatives

Definition. Let f be a function of two variables whose domain D includes points arbitrarily
close to (a,b). Then we say that the limit of f(x,y) as (x,y) approaches (a,b) is and we
write

lim f(x,y)=L
(x,y)—>(ap) (%)
if for every number € >0 there is a corresponding number & >0 such that if (x,y) eD and

0</(x—a)% +(y—b)? <5 then [f(x,y)—L| <.
Other notations for the limit in Definition are
limf(x,y)=L and f(x,y) >L as (x,y) —>(a,b).
X—a

y—b
Definition. A function f of two variables is called continuous at (a,b) if

lim  f(x,y)=f(a,b).
(x.y)—>(ab)
We say f is continuous on D if f is continuous at every pointin (a,b).

The intuitive meaning of continuity is that if the point (x,y) changes by a small amount, then
the value of f(x,y) changes by a small amount. This means that a surface that is the graph of
a continuous function has no hole or break.



Using the properties of limits, you can see that sums, differences, products, and quotients
of continuous functions are continuous on their domains.
If f is a function of two variables x and y, suppose we let only x vary while keeping y

fixed, say y=b, where b is a constant. Then we are really considering a function of a single
variable x, namely g(x) =f(x,b). If g has a derivative at a, then we call it the partial deriva-

tive of f with respect to x at (a,b) and denote it by fx'(a,b).

Thus f, (a,b)=g'(a).
By the definition of a derivative, we have
im 22 iy (KDY ZIY) G2 iy
Ax—0 AX  Ax—0 AX OX
Similarly, the partial derivative of 7 with respect to y at (a,b), denoted by fy'(a,b), is ob-

tained by keeping x fixed (x=a) and finding the ordinary derivative at b of the function
f(a,y):

f(x;y + Ay)—f(x; oz ., .
(xy +Ay) -~ w:__zazguy)

Az
lim ——= lim
Ay—0 Ay Ay-0 Ay oy

Rule for Finding Partial Derivatives of z =f(x,y)
1. Tofind f;(X,y), regard y as a constant and differentiate f(x,y) with respect to x.
2. Tofind f;(x,y), regard x as a constant and differentiate f(x,y) with respect to y.

Partial derivatives can also be defined for functions of three or more variables.
Example 1. Find f(x,y), fi(x,y) if z=f(x}y) = 2x% +3x%y +6xy —y°.
Solution. f; = BX% + 6Xy + By —0 = 6(X> + Xy +Y);

fy =0+3x2 +6x—3y% =3(x% +2xy —y?).
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Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation
z =1(x,y) represents a surface S (the graph of f). If f(a,b) =c, then the point P(a,b,c) lies
on S. By fixing y=b, we are restricting our attention to the curve C, in which the vertical
plane y =b intersects S. (In other words, C, is the trace of S in the plane y =b). Likewise,
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the vertical plane x=a intersects S in a curve C,. Both of the curves C, and C, pass
through the point P .(See Figure 6. )
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Thus the partial derivatives fx'(a,b) and fy'(a,b) can be interpreted geometrically as the

slopes of the tangent lines at P(a,b,c) to the traces C; and C, of in the planes y=b and
X=a.
Directional Derivatives and the Gradient Vector
Definition. The directional derivative of u=1f(x,y,z) at M,(x,,y,.Z,) in the direction of a
vector a = (I,m,n) is

- -
jm 2UMo) _ 2uMy) Ty
M-Mo  [MgM| 03

if this limit exists.
This derivative is found by the formula

% = Uy (Mg)-coscu+uy(Mg)-cosf+u;(Mg)-cosy,
a

I m n
CoS v = 1, cos(3 =, COS = 1=

4 4 4

Directional derivative shows the rate of change in the function at the particular point in this
direction.

Definition. If f is a function of two variables x and y, then the gradient of f is the vector
function defined by
VE(x,y) = gradf =(f;.f).
Derivative in the direction of its gradient takes maximum value.
Example 2. Find the directional derivative of the function u=x+y%—z* at the given point

M, (1;2;-1) in the direction of the vector a = (2,—6;3) . Find the gradient of u(x,y,z).
Solution. We find particular derivatives at the point of M,,.

u, =1, u, (1, 2,-1)=1.

uy, =2y, uy(1,2-1=2-2=4.

u=-32%, U, 2-1)=-3-(-1)"=-3.
8| =22 +(-6) +32 =41 36+9 =49 =T,
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cosa = 3—2 cosB:_T6:—§. coswzizﬁ.
o o 7

Then the desired derivative is equal
ouMy) 42, ,( 6) 53 2-24-9 31
oa 7 7 7 7
Vu(x,y,z) = gradu = (U, uj,,u;) = (1,2y,-32°).

Tangent Planes
The equation z="f(x,y) represents a surface S (the graph of f). If f(x,,y,) =2, then the

point P(x,,Yq.2,) lies on S. By fixing y =y, , we are restricting our attention to the curve C,
in which the vertical plane y =y, intersects S. (In other words, C, is the trace of S in the
plane y =y, ). Likewise, the vertical plane x =X, intersects S in a curve C,. Both of the
curves C, and C, pass through the point P. Let T, and T, be the tangent lines to the curves
C, and C, at the point P(x,,y,.2). Then the tangent plane to the surface S at the point
P(xo.,Yo,Zp) is defined to be the plane that contains both tangent lines T, and T,. (See Fig-

ure 7)
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Suppose f has continuous partial derivatives. An equation of the tangent plane to the sur-
face z=1(x,y) at the point P(x,y,Z;) is
z-25 =H(Xo,Yo) - (X=Xo) +1;(X0,¥0) - (Y = ¥o)-
The canonical equations of normal to this surface, carried out through the point P(x,,y,,2)
will be written down thus

X=Xo _ Y—=Yo _Z-2

f(Xo.¥o)  fy(Xo.¥o) 1 .
Note. Again the gradient vector gives the direction of fastest increase of f. Also, by consid-
erations similar to our discussion of tangent planes, it can be shown that gradf = Vf(x,,y,) is
perpendicular to the level curve f(x,y) =k that passes through P(x,,Y,,Z,) - Again this is intui-

tively plausible because the values of f remain constant as we move along the curve. (See
Figure 8.)
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Example 1. Find the tangent plane to the elliptic paraboloid z:2x2+y2 at the
point P(1;1;3).
Solution. Let z =2x* +y2. Then
fe(X,y) =4x, f.(1,1)=4;
fy(x.y) =2y, (11 =2.
Then z—z, =1(Xg,Yo) - (X—Xg) +(X0,¥0) - (Y —VYo) gives the equation of the tangent
plane at P(1;1;3) as
z-3=4(x-1)+2(y-1)
or
z=4x+2y-3.

Exercise Set 2
To find the particular derivatives

2(x,y) =3x3y? +2x*y —4xy> +5x—15y* +3 .
2(x,y) =4y> X2 —5y2x+ 3y x> + 3y —5x% +7 .

1

2

3

4

5. z(xy)=5xy? —3x*y +2xy® —4x+8y* -4 .

6. z(x,y)=2y’x*—-4y?x+3yx®-5y+7x>-6.

7. z(xy)=3x°y> —5x2y +2xy° +y —4x+T7y* —11.

8. z(x,y) =3y x2+5y2x+2yx* —7y? +2x—12.

9. z(x,y)=7xy?—4x*y-7xy>+2y?-2x-5.

10. z(x,y)=2x3y? -3xy+2xy° —4x%>+4y-5.

Find the directional derivative of the function f(x,y) at the given point M, in the direction of

the vector a.Find the gradient of f(x,y).

1. z(xy)=x>-2y*x+xy+3y?*—x-3y+3, M(-1;3), a=(12-5).
12, Z(X,y)=X2+Xy+Yy>+2x+2y , M(1;1), a=(3;4).
13. z(x,y)=2y> -2x%y+2xy* -5, M(-2;1), a=(-4;3).
14. z(x,y)=-3y® -4x?y—-6xy%+5, M(-1;2), a=(-8;-6).

9



Find an equation of the tangent plane to the given surface at the specified point.

15.  S:z=x%+2y*+4xy—5y-10, M,(-7;1;8).
16.  S:z=4y*+4xy—x, M,(1,-2;7).
17.  S:z=x*-y?—4x+2y, M,(3;1,-2).
18.  S:iz=x’+y?—4xy+3x—15, M,(—1; 3; 4).

1.3 Differentials. The Chain Rule
For a differentiable function of two variables z =f(x,y), we define the differentials dx and

dy to be independent variables; that is, they can be given any values. Then the differen-
tial dz, also called the total differential, is defined by
dz =z, dx +z,dy =f; (x,y)dx+f(x,y)dy, Ax =dx, Ay =dy.
Sometimes the notation df is used in place of dz.
The differential du is defined in terms of the differentials dx,dy and dz of the independ-
ent variables by
u="f(x,y,z) du="f(x,y,z)dx +f;(x,y,z)dy +f;(x,y,z)dz.

Figure 9 shows the geometric interpretation of the differential dz and the increment Az
represents the change in height of the tangent plane, whereas Az represents the change in
height of the surface z =f(x,y) when (x,y) changes from (a,b) to (a+ Ax,b+ Ay).

4

{[a+ax.b+Ay fla+ Ax. b+ Ay)
surface z = f{x, y)

(a. b, fla, b)) _|

la+Ax, b+ Ay 0)
tangent plane
z— fla, b)= f;la, b)ix— a) +.f_!||rﬂt By — B)
Figure 9
If we take x =X, +Ax and y=y,+Ay indz=zdx+z,dy =f,(x,y)dx+f;(x,y)dy, then
the differential of z is
dz =, (%,Y)(x=Xg) + f (X, Y)Yy —=¥o)-
So, in the notation of differentials, the linear approximation can be written as
f(xy)= f(xo;yo)+fx'(x0;y0)-AX+fy' (Xo0:¥0)-Ay.
Example 1. Calculate /4,112 +3,022 .

Solution. /4,17 +3,022 = J(4+0,11) + (3+0,02)°

10




Let f(x;y) =/x* +y* where x =X, +AX; Xg =4; Ax=0,11;
Yy=Yo+Ay;y,=3; Ay=0,02.

f(xg;yo)=V4° +3* =5.

f(xy)= f(xo;y0)+fx'(xo;yo)-Ax+fy'(xo;yo)-Ay.
\/4,1 12 -|—3,022 ~5+0,6-0,11+0,8-0,02=5+0,066+0,016 =5,082.

Example 2. Find the differential of the function z(x,y) = tg5\/i.
X

Solution.

z;:[tgs\ﬁ] :5tg4\ﬁ.[tgﬁ] —5tg* |2 1 [ Xj -
X X X X Z\P X
X X cos®, |- X
X
vy 1 1Y vy 1 13
:5194\/:.—. y(_J :5tg4\/:. Wy =x2 =
X \/y- \/_ \/; X X 2 1Y \/_ 2

COS2

X
— .5t 4\/V 1 \/g
— - g _ . .2\/_
X COSZ\/V X
X
z'y{tgs\ﬁJ =5tg4\ﬁ-(tg\ﬁj _stg* [L. {\ﬁ) _
x), X x), X o]y \\x

1 : y o1
:5tg4\/i.—._. y :5tg4 —_— . .
X 2\/y Jx (\/7)” x 2 [y Vx
X

:5tg4\ﬁ- 1 -21.
Xcosz\ﬁ( Xy

dz:z;dx+z;dy:-5tg4\/z- 1
X 2




For functions of more than one variable, the Chain Rule has several versions, each of them
giving a rule for differentiating a composite function. The first version deals with the case
where z =f(u,v) and each of the variables u and v is, in turn, a function of a variable x. This

means that z is indirectly a function of x, z=f(u(x),v(x)) and the Chain Rule gives a formula
for differentiating z as a function of x. We assume that is differentiable.
The Chain Rule (Case 1)
Suppose that z="f(u,v) is a differentiable function of u and v, where u=d¢(x), v=1y(x),

and are both differentiable functions of x.
Then z is a differentiable function of x and
dz 0z du oz dv

dx ou dx ov dx
The Chain Rule (Case 2)
Suppose that z=f(u,v) is a differentiable function of u and v , where u=da(x,y) and
v =1)(x,y) are differentiable functions of x and y. Then
Z, =z, -U, +2, -V,
{z’y =2, U, +2Z, -V,

Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of implicit
differentiation. We suppose that an equation of the form F(x,y) =0 defines implicitly as a dif-

ferentiable function of x, that is, y =f(x), where F(x,f(x))=0 for all x in the domain of f. If

F is differentiable, we can apply Case 1 of the Chain Rule to differentiate both sides of the
equation F(x,y) =0 with respect to x. Since both x and y are functions of x, we obtain

dy  Fxy)

dx  F(xy)

Now we suppose that is given implicitly as a function z =f(x,y) by an equation of the form
F(x,y,z) =0. This means that F(x,y,f(x,y)) =0 for all (x,y) in the domain of f.If F and f are
differentiable, then we can use the Chain Rule to differentiate the equation F(x,y,z) =0 as fol-
lows:

oz FR(xyz oz Fxyz
x  R(xyz) oy Fxy2

Note. Suppose f has continuous partial derivatives. An equation of the tangent plane to the

surface F(x,y,z) =0 at the point Py(x,,Yq,2p) is
Fe(X0,Y0:2Z0) - (X=Xg) + Fy(X0.¥0,20) - (Y = Yo) + F(Xq,¥0,20) (2= 24) = 0.

The canonical equations of normal to this surface, carried out through the point

Po(Xg,Yg,Zo) Will be written down thus

X—Xo _Y=Yo_27%

R RR)  F(R)
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2
Example 3. Find the differential of the function z = X if x=u-2v, y=2u+v.

y
Solution. dz = @du + @dv .
ou ov
2
8_2_1(ij22_2_
ou y y y 'y
2 2
@zﬁ.(z){%}hﬂx_z_
oy y y 'y

2 2
dz=(2—X—2izjdu+[—ﬂ—x—2jdv=5{2(1—5Jdu—[4—5jdv}
y 'y y 'y y y y
:u—2v 2(1_u—2vjdu_(4+u—2vjdv _
2u+V 2u+V 2U+V
= U7 o+ Bv)du— (9u-+ 2v)av]
(2u+v)

Example 4. Find the particular derivatives 4x? +2y? —3z2 +xy—yz+x—4=0.

Solution. F(x;y;z) = 4x? +2y* —=32% +xy —yz + X — 4.
F;:(4x2+2y2—322+xy—yz+x—4);:8x+y+1.
Fy’:(4x2+2y2—322+xy—yz+x—4);=4y+x—z.
FZ’:(4x2+2y2—322+xy—yz+x—4)’z:—62—y.
oz F 8x+y+l oz R x+dy-z
ox F  6z+y oy F 6z+y

Exercise Set 3
Find the differential of the function

1. z(x,y)=arccos3\/i. 6. z(x,y)=arcsin’ y
X X
2. z(x,y)=arctg® | 2. 7. z(xy)=arcctg® | 2.
y y
3. z(x,y):sin3£3/. 8. z(x,y):cos5£;(.
X y
5 4
X
4. z(x,y):ctg4y—. 9. z(x,y)=tg’ —.
E Iy

5. z(x,y)= cos?

7\
~<‘><,\,

J. 10. z(x,y)=sin® (%)

13



Find the particular derivatives

1. z=f(uyv), u=x%—-4y, v=xe'.

12. z:arccos%, u=x+lny, V=—28_X2.

13. z=1(u,v), u:xy+¥, v=x3—y2,

14. Z:eu2—3sinv, U=Xcosy, V=§.

Calculate
15.  /3,122+3,982 . 16. /5,862 +811.
7. /5,192 +11,972 . 18.  /3,032+3,872.
19. /6,122 +7,982. 20. 5132 +1192.

1.4 Higher Derivatives. Maximum and Minimum Values
If f is a function of two variables, then its partial derivatives f,(x,y) and f(x,y) are also

functions of two variables, so we can consider their partial derivatives (f);, (f;);. ()}, and

(fy)} , which are called the second partial derivatives of f. If z=f(x,y), we use the following

notation:

80z, &z ., o 0z, &z

= _=(z ,:Z”, —(ZZy = —Z,’:Z”,
L -ehege D= Tle@) g,
2%-8_22—(2’)’_2” i@_a_zz_ Zr)r_zn
ox oy oyox dy oy oy YT

2

Thus the notation f,, (x;y) (or aa—azy) means that we first differentiate with respect to x and
X

then with respect to y, whereas in computing f/, (x;y) the order is reversed.
Example 1. Find the second partial derivatives of z = x® + 2x%y —8xy? +y°.
Solution. z,, = 3x% + 4xy —8y? and zy = 2x% —16xy + 3y*.
yANES (3% +4xy — 8y2); =6x+4y.
(32 +4xy—8y2)'y =4x-16y.
(2x2 —16xy +3y°), = 4x—16y .
(2x* —16xy +3y*), =—16x + by
Notice that in Example 1 z, = z{, . This is not just a coincidence. It turns out that the mixed
partial derivatives zy, and zy, are equal for most functions that one meets in practice. The

following theorem, which was discovered by the French mathematician Alexis Clairaut (1713-
1765), gives conditions under which we can assert that z}, =z}

yx:
14
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Clairaut’s Theorem. Suppose z is defined on a disk D that contains the point (a,b). If the
functions z{, and z{, are both continuous on D, then z} (a,b) =z,(a,b).
Partial derivatives of order 3 or higher can also be defined. For instance,

Z”! — (Z!! )l :Q£8—22j ]
WY oy | oyox
Then the differential d’z of z="(x,y), also called the total differential order by two, is
defined by
dzz:a—zi-dx2+28—2z-dxdy+a—2§-
OX oxoy oy
One of the main uses of ordinary derivatives is in finding maximum and minimum values. In
this section we see how to use partial derivatives to locate maxima and minima of functions of
two variables.
Look at the hills and valleys in the graph of f shown in Figure 10. There are two points
(a,b) where f has a local maximum, that is, where f(a,b) is larger than nearby values of

z=f(x,y). The larger of these two values is the absolute maximum. Likewise, f has two local
minima, where f(a,b) is smaller than nearby values. The smaller of these two values is the
absolute minimum.

dy?.

absolute

absolute
minimum

minimum

Figure 10

Definition. A function f of two variables has a local maximum at (a,b) if f(x,y) <f(a,b)
when (x,y) is near (a,b). [This means that f(x,y) <f(a,b) for all points (x,y) in some disk
with center (a,b).] The number f(a,b) is called a local maximum value. If f(x,y)>f(a,b)
when (x,y) is near (a,b), then f has a local minimum at (a,b) and f(a,b) Is a local mini-

mum value.
If the inequalities in Definition hold for all points (x,y) in the domain of f, then f has an ab-

solute maximum (or absolute minimum) at (a,b).

Theorem. If f has a local maximum or minimum at (a,b) and the first-order partial deriva-
tives of f exist there, then f;(a,b) =0 f/(a,b)=0.

Thus the geometric interpretation of Theorem is that if the graph of f has a tangent plane at
a local maximum or minimum, then the tangent plane must be horizontal.

A point (a,b) is called a critical point (or stationary point) of f if f(a,b)=0 and
fy(a,b)=0, or if one of these partial derivatives does not exist. Theorem says that if f has a

15



local maximum or minimum at (a,b), then (a,b) is a critical point of f. However, as in single-

variable calculus, not all critical points give rise to maxima or minima. At a critical point, a func-
tion could have a local maximum or a local minimum or neither.

We need to be able to determine whether or not a function has an extreme value at a critical
point. The following test, which is proved at the end of this section, is analogous to the Second
Derivative Test for functions of one variable.

Second Derivatives Test. Suppose the second partial derivatives of u are continuous on a
disk with center (x,,y,), and suppose that and [that is, (X,,Y,) is a critical point of u]. Let

U (Xo:Yo) Uy (Xo.Yo)
Uik (Xo,Yo)  Ujy (Xo,Yo) |

(@) If A>0 and ul,(Xy,Yy) >0, then u(x,,y,) is alocal minimum.

(b) If A >0 and ul,(Xq,Yo) <0, then u(xy,y,) is a local maximum.

(c) If A >0, then u(xy,y,) is not a local maximum or minimum.

Note 1. In case (c) the point (x,,y,) is called a saddle point of u and the graph of u
crosses its tangent plane at (x,,Y,) -

Note 2. If A =0, the test gives no information: u could have a local maximum or local min-
imum at (x,,Y,), or (Xo,Yo) could be a saddle point of u.

Example 2. Find the local maximum and minimum values and saddle points of
z(x,y) = 2x> - 12xy + 3y? - 18x - 6y + 3.
Solution. We first locate the critical points:

’ :(2x3-12xy+3y2-18x-6y+3), = 6x>-12y-18;
X

z'y=(2x3-12xy+3y2-18x-6y+3)' = -12x+6y-6.
y

Setting these partial derivatives equal to 0, we obtain the equations

{ZX—O,
z, =0.

{6x2-12y-18=0, {x2-2y3 0, [x*-2(2x+1)- 0,©{x2-4x-5=0,
+

-12x+6y-6=0, 2X+y-1=0 =2X+1, y=2x+1.
L AEN(4)-4:(5) 4+ \/16+2 436 446
- 2 2 2 2
x:ﬂz-t x:ﬂ:S,
2 or 2
y=2:-(-1)+1=-1, y=2-5+1=11.

The two critical points are M,(-1,-1) and M, (5;11).
Next we calculate the second partial derivatives and A :

2 =(2) = (62 -12y-18) =6(x2) -0-0=12x;

16



z, =(z’x)'y=(6x2-12y-18)'y:0-12(y)’y-0:-12;
Zy=(2y) =(12x+6y-6), =-12(x), +0-0=-12;
z! :(z'y)y:(-12x+6y-6)'y:0+6(y)ly-0:6.

w2y

" ”
yx Ly

Since A (M;(~1-1)) =72:(-1)-144 =-216 <0 it follows from case (c) of the Second De-

rivatives Test that the point M, (-1;-1) is a saddle point; that is, z(x,y) has no local maximum
or minimum at M, (-%-1).

Since A(M,(5,11))=72-5-144=216>0 and z}, (M,) =2z, (511)=12-5=60>0 we
see from case (a) of the test that.

Zmin(X;y) =2(5;11) =-200 is a local minimum.
Example 3. Find the local maximum and minimum values and saddle points of
z(x,y) =x* +y* —dxy +1.
Solution. We first locate the critical points:
’ :(x4 +y! —4xy+1) =4x% —4y;

'
X

z

14
XX

A= =2y 20 = Zy 20, =12X-6-(-12)-(-12) = 72x - 144 .

yy ~Sxy T Cyx

z

zy :(x4+y4—4xy+1), =4y° —4x.
y

Setting these partial derivatives equal to 0, we obtain the equations
x*—y=0and y®-x=0.

To solve these equations we substitute y = x> from the first equation into the second one.

This gives
0=x"—x=x(x® =) =x(x* = 1)(x* +1) = x(x* = N(x* + N(x* +1)

so there are three real roots: 0,-1 ,1. The three critical points are M,(0,0), M,(-1,—1) and
M, (1,1).

Next we calculate the second partial derivatives and A :

z, —(z;)'x =12x%;

XX

14 !

Zxy :(Zx )'y = Zyx =—4;

/4
XX ny

yx Ly

" " " "o 2,2
=Zjy < Zyy - Zy, - Zy, = 144X%y° —16.

17



Since A(M1(0,0)) =-16 <0 it follows from case (c) of the Second Derivatives Test that the

point M, (0,0) is a saddle point; that is, z(x,y) has no local maximum or minimum at M,(0,0).

Since A(My(—1,—1)) =144-16=128>0 and 2z, (M,) =24 (~1,—1)=12-1=12>0 we
see from case (a) of the test that

Zmin(X;y) = z(—1,-1)=-1 is a local minimum.

Since A(My(1,1))=144-16=128>0 and 2z, (M;) =24 (11)=12:1=12>0 we see

from case (a) of the test that
Zmin(X;y) =2(1,1) = -1 is a local minimum.
The graph of z is shown in Figure 11.

!

)

Figure 11

Absolute Maximum and Minimum Values
For a function of f one variable the Extreme Value Theorem says that if f is continuous on
a closed interval [a,b] then f has an absolute minimum value and an absolute maximum val-

ue. According to the Closed Interval Method, we found these by evaluating f not only at the
critical numbers but also at the endpoints a and b.
There is a similar situation for functions of two variables. Just as a closed interval contains

its endpoints, a closed set in R? is one that contains all its boundary points. [A boundary
point of D is a point (a,b) such that every disk with center (a,b) contains points in D and also

points notin D.]

A bounded set in R? is one that is contained within some disk. In other words, it is finite in
extent. Then, in terms of closed and bounded sets, we can state the following counterpart of
the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two Variables

If  is continuous on a closed, bounded set D in R?, then f attains an absolute maximum val-
ue f(x4,y4) andan absolute minimum value f(x,,y,) at some points (x,,y,) and (X,,y,) in D.

We have the following extension of the Closed Interval Method.
18



To find the absolute maximum and minimum values of a continuous function f on a closed,
bounded set D :

1. Find the values of f at the critical points of f in D.

2. Find the extreme values o f fon the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest
of these values is the absolute minimum value.

Example 4. Find the absolute maximum and minimum values of the function

f(x,y) = x* —2xy +2y on the rectangle D ={(x,y):0<x<3,0<y<2}.

Solution. Since f is a polynomial, it is continuous on the closed, bounded rectangle D, so
last theorem tells us there is both an absolute maximum and an absolute minimum. According
to step 1, we first find the critical points. These occur when

fe =2x -2y,
fy =—2x+2,
so the only critical pointis(1,1) , and the value of there is f(1,1) =1.

In step 2 we look at the values of f on the boundary of D, which consists of the four line
segments L,,L,,L5,L,, shown in Figure 12. On L; we have y =0 and

f(x,0)=x*> 0<x<3

¥
L, (22
(0,2) . (3,2)
£ L,
0,0} L, (3,00  x
Figure 12

This is an increasing function of x, so its minimum value is f(0,0)=0 and its maximum
value is f(3,0)=9.0n L, we have x=3 and f(3,y)=9-4y, 0<y<2.

This is a decreasing function of y, so its maximum value is f(3,0) =9 and its minimum val-
ueis f(3,2)=1.0n L; we have y =2 and f(x,0)=x*>—4x+4, 0<x<3.

By observing that f(x,O):(x—2)2, we see that the minimum value of this function is
f(2,2)=0 and the maximum value is f(0,2)=4. Finally, on L, we have x=0 and
f(0,y) =2y, 0<y <2 with maximum value f(0,2) =4 and minimum value f(0,0)=0. Thus,

on the boundary,the minimum value of f is 0 and the maximum is 9.
In step 3 we compare these values with the value f(1,1) =1 at the critical point and conclude

that the absolute maximum value of f on D is f(3,0)=9 and the absolute minimum value is
f(0,0)=1(2,2) = 0. Figure 13 shows the graph of .
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Figure 13

Exercise Set 4
Find the differential d%z of
1. z(x,y)=3x3y? +2x%y —4xy> +5x—15y2 +3 .

)
)
):2x3y2—2x3y—4xy3+5x—2y3+7.
) =7y X2 +3y2x—y x> +3y? —=5x° +1.

)

(x,y):2y3x2—4y2x+3yx3—5y+7x2—6 :
(x,y) =3x%y* —=5x%y +2xy3 +y—dx+7y? —11.

N

2(x,y) =3y x? +5y2 x+ 2y x> = 7y? +2x—12.

© oo N ok W
N

z(x,y):7x3 y2 —4x2y—7xy3 +2y2 -2x-5.
10. z(x,y)=2x>y? -3xy+2xy° —4x*>+4y-5.
Find the local maximum and minimum values and saddle points of
1. z(x,y)=2x>+12xy+3y? -6x-12y +13.

12. z(x,y)=-3x%>-12xy-2y® +12x+6y—-10.
13. z(x,y)=2x>—6xy -3y’ —6X+6Yy+1.

14, z(x,y)=2x>—6xy+3y?>-12y+5.

15. z(x,y)=2x> +6xy—3y* —12x +1.

16. z(x,y)=2x>—12xy+3y>+30x -6y +6.
17. z(x,y)=-3x>+12xy—2y° +6x-30y +1.
18. z(x,y)=2y> —6xy—3x?-6y+6x+10.
19. z(X,y)=-3x*+6Xxy—-2y° +12x+2.

20. z(x,y)=2x>+6xy—3y? —36x+2.
Find the absolute maximum and minimum values of f on the set D.
21, z=4(x—y)—x*—y?, D: x+2y=4, x-2y=4, x=0.
22. z=x?—y?+2xy—4x, Xx—y+1=0, x=3,y=0.

23. z=x2+2xy—4x+8y,

D
D
D: x=0, y=0, x=1y=2.
D

24, z=x2+2xy—y*—4x+2, y=x+1 x=3, y=0.
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IT INTEGRALS

2.1 Antiderivative

A physicist who knows the velocity of a particle might wish to know its position at a given
time. An engineer who can measure the variable rate at which water is leaking from a tank
wants to know the amount leaked over a certain time period. A biologist who knows the rate at
which a bacteria population is increasing might want to deduce what the size of the population
will be at some future time. In each case, the problem is to find a function F whose derivative
is a known function f. If such a function F exists, it is called an antiderivative of f.

Definition. A function is called an antiderivative of f on aninterval | if F'(x) =f(x) for all x
in /.

For instance, let f(x)=x?. It isn't difficult to discover an antiderivative of f if we keep the

Power Rule in mind. In fact, if F(x):%x3, then F'(x)=x*=f(x). But the function
G(x):%x3+100 also satisfies G'(x)=x2. Therefore both F and G are antiderivatives of

f(x). Indeed, any function of the form H(x) = %XB +C, where C is a constant, is an antideriv-

ative of f(x). The question arises: Are there any others?

If two functions have identical derivatives on an interval, then they must differ by a constant.
Thus if F and G are any two antiderivatives of f, then F'(x)=f(x)=G'(x) so
F(x)—G(x) =C, where C is a constant.

Theorem. If F is an antiderivative of f on an interval /, then the most general antideriva-

tive of f on | is F(x)+C ,where C is an arbitrary constant.

Going back to the function f(x)=x%, we see that the general antiderivative of is

F(x) =%x3 +C. By assigning specific values to the constant C, we obtain a family of func-

tions whose graphs are vertical translates of one another (see Figure 1). This makes sense
because each curve must have the same slope at any given value of x.

FIGURE 1
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Example 1. Find the most general antiderivative of each of the following functions:
(a)f(x) =sinx; (b)f(x) =—; (c) f(x)=x" n= -1,

Solution.
(a) If F(x) =—cosx, then F'(x) = sinx, so an antiderivative of sinx is —cosx. By Theorem,
the most general antiderivative is G(x) =—cosx +C.

(b) Recall that di(lnx) =1. So on the interval (0;+o0) the general antiderivative of 1 is
X X X

Inx+C. We also learned that di(ln\x\) = 1 forall x=0. Theorem then tells us that the gen-
X X

eral antiderivative of f(x) :1 IS In\x\+C on any interval that doesn't contain 0. In particular,
X

this is true on each of the intervals (—0;0) and (0;+0). So the general antiderivative of f is
F(x) =In|x|+C.

(c) We use the Power Rule to discover an antiderivative of x". In fact, if n=—1, then
d, d x™  (+)x"

—(x")=—— )= =x". Thus the general antiderivative of f(x)=x" is
dx dx n+1 n+1

n+1

Fx)=2—+C.
n+1

As in Example 1, every differentiation formula, when read from right to left, gives rise to an
antidifferentiation formula. In Table 1 we list some particular antiderivatives. Each formula in
the table is true because the derivative of the function in the right column appears in the left
column. In particular, the first formula says that the antiderivative of a constant times a function
is the constant times the antiderivative of the function. The second formula says that the anti-
derivative of a sum is the sum of the antiderivatives. (We use the notation F'(x) =f(x) and

G'(x) =g(x)).
Table 1
Function Particular antiderivative Function Particular antiderivative
cf(x) cF(x) sinx —COS X
%)+ g(x) F(x)+ G(x) ! tgx
COS“ X
n+1 1
x"(n=—1) X -— ctgx
n+1 sin“ x
1 1 .
_ In\x\ > arcsinx
X 1—X
1
X X arctgx
© © 14 X2
, 1 i In X—a
COS X sinx 22 2 xra
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2x5 —/x

X

Example 2. Find all functions such that g'(x) =4sinx +

Solution. We first rewrite the given function as follows:
5
2¢ _dsinx+2x* -1
X Jx
1

Thus we want to find an antiderivative of g'(x) = 4sinx + 2x* _ 1 o dsinxa2xt—x 2,

Jx
Using the formulas in Table 1 together with Theorem, we obtain
—1+1
X 2

—1+1

2

In applications of calculus it is very common to have a situation as in Example 2, where it is
required to find a function, given knowledge about its derivatives. An equation that involves the
derivatives of a function is called a differential equation. These will be studied in some detail
later, but for the present we can solve some elementary differential equations. The general so-
lution of a differential equation involves an arbitrary constant (or constants) as in Example 2.
However, there may be some extra conditions given that will determine the constants and
therefore uniquely specify the solution.

g'(x) =4sinx+

5

X
X)=—-4cosx+2 —
9x) 4 +1

=—4cosx+§x5—2\/§+C.

Example 3. Find f f/(x) = e* + —2°

and f(0)=-2.
1+ X

2

Solution. The general antiderivative of f'(x) =e* + is f(x) =e* +20arctgx +C.

14 x

To determine C we use the fact that f(0) = —2:f(0) = e® +20arctg0 + C = —2.
Thus we have 1+0+C =-2, C =-3, so the particular solution is f(x) =e* + 20arctgx — 3.

2.2 Indefinite Integrals
Both parts of the Fundamental Theorem establish connections between antiderivatives and
definite integrals. We need a convenient notation for antiderivatives that makes them easy to
work with. Because of the relation given by the Fundamental Theorem between antiderivatives

and integrals, the notation J. f(x)dx is traditionally used for an antiderivative of f and is called
an indefinite integral. Thus jf(x)dx =F(x) +C means F'(x) =f(x).

For example, we can write szdx = %x3 +C because di(% x> +C)=x2.
X

So we can regard an indefinite integral as representing an entire family of functions (one an-
tiderivative for each value of the constant C).

We therefore restate the Table of Antidifferentiation Formulas from Section 2.1, together
with a few others, in the notation of indefinite integrals. Any formula can be verified by differen-
tiating the function on the right side and obtaining the integrand. For instance
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J. d); =tgx+C because i(tgx): 12 .
COS” X dx COS” X

Table of Indefinite Integrals

[ cf(x)dx = ¢ _[ f(x)dx. [(£(x) = g(x))dx = F(x) + G(x) + C.
.f(ax+b)dx:1F(ax+b)+C. dx=x+C.
o a o
. n+1 "dX
X"dx = = +Cn=-1. — =2Jx+C.
o n+1 hd \/;
.axdx:intc. e*dx=e*+C.
R Ina *
cosxdx = sinx+C. sinxdx =—cosx+C.
*dx * dx
>—=1gx+C. ——=—clgx+C.
J cos”x J sin” x
d—X:In\x\+C. 2dx ’ :iInE+C.
J X Jx“—-a° 2a |x+a
[ — :1arctgi+C. [ — arcsin> +C .
Jx“+a" a a J \Ja? = x? a
[ =In‘x+\/x2—a2 +C. [ =In‘x+\/x2+a2 +C.
J \x? — 32 J VX% +a?

2.3 Techniques of Integration

In this chapter we develop techniques for using these basic integration formulas to obtain
indefinite integrals of more complicated functions. We learned the most important method of
integration, the Substitution Rule. The other general technique, integration by parts, is pre-
sented in next section. Then we learn methods that are special to particular classes of func-
tions, such as trigonometric functions and rational functions. Integration is not as straightfor-
ward as differentiation; there are no rules that absolutely guarantee obtaining an indefinite in-
tegral of a function.

2.3.1 Integration by the introduction of derivative under the sign of differential
The simplest methods of integration include the presence of indefinite integrals with the aid
of the fundamental rules of integration and table of integrals, integration by the introduction of
derivative under the sign of differential.
All integral formulas remain valid, if we in them instead of variable x substitute a certain dif-
ferentiated function from x. In this case for reducing of the integral to tabular integral in ques-
tion sometimes it suffices to represent dx on one of the formulas:

1. dx =d(x +a); 2. dx =1d(ax); 3. dx =1d(ax+b).
a a
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Example 1. Find _[ (4x3 _23x? +%+1jdx.

X

Solution. J(4x —2\/7 +%+1)dx (we will use table of indefinite integrals)=

=4. j x3dx—2- Ix3dx+ZJ 3dx+J.dx—
W4

=4.—-2. Ex5+2 —+x+C X —§x3—i+x+C
4 5 —2 9 X2

Example 2. Find _[

dx
\/16x2+9.
J‘ dx :J‘ dx :1J‘
V12 +9  J Jax)?+32 4 \/4x +32

Example 3. Find j .
(2x —

Solution.

—In|4x+\/16x +9|+C.

Solution.

dx . -5 :1 -5 _ :i 4 __ 1
J' T _[ (2x=1)Pex = J (2x=) Pd@r )= g2 * =€

Example 4. Find j
sm 6x

Solution. j :—1ct96x+C.
sin® 6x 6 sm 6x

Example 5. Find j

X2 +2x+3
, dx d(x+1) 1 x
Solut/on.j I
X2 +2x+3  J (x+1)?2+2 \/_ \/—

In the next examples the method of the introduction of derivative under the sign of differen-
tial will be used. It is based on the use of the formula ¢'(x)dx = d(d(x)), from which, in particu-

lar, it follows that

Sy 2. 240 _ (3 oy 10003,
xdx—E(x ) dx_Ed(x ) X dx—g(x )dx—gd(x );
— =(Inx)'dx =d(Inx); cos xdx = (sinx)'dx = d(sinx);
X
sinxdx = —(cos x)'dx = —d(cosX) ; eXdx = (ex )' dx = d(ex );

d); = (tgx)'dx = d(tgx); dx = —(ctgx)'dx = —d(ctgx);

cos? X sin® x

x > = (arctgx)'dx = d(arctgx) .
1+ X
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Example 6. Find j X244+ x3dx.

1
Solution, sz 4+x3dlej(4+ 3)
3

(4+x ), dx :%I(4+x3)2 d(4+x%) =

N —

2( 3% 2 33
=— 4+x) +C=—=4/(4+x")" +C.
9 9

Example 7. Find j
X+1) In (x+1)

Solution. _[ x =_[ ('”(X”»'dxzjd('”(x”)):|n||n(x+1)|+c.
(x+1)|n(x+1) In(x+1) In(x +1)

Example 8. Find I

arcsmx\/1 x°
arcsinx)'dx J'd(arcsinx)

arcsinxy1—x2 J. arcsinx arcsinx

Example 9. Find jmdx.

Solution. I =In]arcsinx | +C.

Solution. I

1 2 1 2
=—In(x“ +1)——arctg“x +C.
Snix* +1)~ - arctg

2
X — arctgxd _ XdX2 _ arctg;( dx :{[M— I arctgx d(arctgx) =
1+ X2 1+X 1+X 20 x"+

Exercise Set 5
Evaluate the integral

1 (] 245 - —+—J 2 ( A jdx.
¢ \/x73 J\5xE+4 X" -4
3 [ —2—5(3x+1)® o 4. | (2sin(1-6x)-+ 46> )dx.
J1 (2+4x) J
3. | Vsinxcosxdx. 6. .,/1+|nxd_x
L o X
7. .zd—x. 8. .d—xl
J sin”(1-3x) J 2x% +6x +4
3
* X°dx c tg?
9. . 10. 22X ax.
J 54 x4 J cos” x
. A3
11 J'2x 5arccosx dx. " g3X i
V1-x2 Jef 425
13. J.smxcos Xdx. 14. | sinxcos? xdx.
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15.

17.

19.

21.

23.

25.

27.

29.

( dx

¢ \/x2+4x+20'
( dx
J(x+3)In*(x+3)
C tg2X +1
J cos?x
N e3x

Je¥X45

dx.

dx.

( dx

J sin?(3x+2)
1+ tgx
J cos? x
(" 2X —5arctgzx
R 1+ X2

dx.

dx.

(2sin(1-8x) +6e***)dx.

16.

18.

20.

22.

24.

26.

28.

30.

( dx
cos?(3x+2)
* x%dx
Nz

* X — 2arctgx
1+ %2

(2003(8 —4x)+66> 7" Jox.

dx.

In*(x—2)dx
(x=2)
* xdx
\/1+5x4.
* dx
x2—8x—9

2.3.2 Integration by Parts
Every differentiation rule has a corresponding integration rule. For instance, the Substitution
Rule for integration corresponds to the Chain Rule for differentiation. The rule that corresponds

to the Product Rule for differentiation is called the rule for integration by parts.
The method of integration by parts based on the use of the formula

J.u(x)dv(x) = U(X)v(x)— Iv(x)du(x) orjudv =uv-— J.vdu,

where u=u(x),v =v(x) are the continuously differentiated functions.

The application of a formula is expedient, when under the integral sign there is a work of
functions of different classes. In certain cases it is necessary to use the formula of integration

in parts several times.

jlnxdx= u=Inx, du=—

Example 1. Find j Inxdx.
Solution.
dx

dv=dx, v=x

Example 2. Find _[ (2% +1)cos 3xdX.

Solution.

X | =xInx—

dx

X_

X
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=2x+1, du=2d
U=2X+ u=2dx 2x+1

dv = cos 3xdx, v=§sin3x_ 3

2x+1)cos 3xdx = sin3x 2 sin3xdx =
( 3

2% +1

sin3x +§cos3x+C.

Example 3. Find ij arctgxdx .

Solution.

2
1+ x2| = x?arctgx — I X dX2 = xarctgx —J'

dv = 2xdXx, V=X 1+

u=arctgx, du=

(X2 +1)—1

5 dx =

j 2xarctgxdx =
1+ X

= x%arctgx — J. dx + J 1 x > = X“arctgx — x +arctgx + C.
+X

Example 4. Find j X2 sinxdx.

Solution.
_ 2 _
J.xzsinxdx= u=x du=2xdx :—xzcosx+ZIxcosxdx:
dv =sinxdx, v=-—cosx
u=x, du=dx

= — cosx+2(xsinx—jsinxdx) = —x2 oS X +2xsinX +2cosX +C
dv=cosxdx, Vv =sinx

Exercise Set 6
Evaluate the integral

1. | (1-3x)In(4x)dx . 2. | (2x+3)cos5xdx . 3. (1—x23inx)dx.
. o o n2
4. | xarctg2xdx. 5. (5x2+1)e‘2"dx. 6. In_xdx.
bt bt o X2
7. [x%eax. 8. [sininx)dx . . [X5%% gx.
R R J SIN" X
10. jxm(zx)dx. 1", j(3—x)sin4xdx. 12 j(x2—4)cosxdx.
13. J.xln(5x)dx. 14, J.(1—x)0052xdx. 15. I(S—xz)sinxdx.

2.3.3 Replacement of Variable in the Indefinite Integral
The method of integration by replacement of a variablis based on the use of the formula

[ 0x= [ gtotnorgex = [ ot
Example 1. Find j x/x—1dx.

Solution.
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J.Xx/x—1dx - 2_[(? Y dt=2j(t4+t2)dt =2It4dt+2ft2dt :%tS +§t3 +C=

=%t3(3t2+5)+C=% (x=1)*(3x+2)+C, where x—1=t?;dx = d(t? +1) = 2tdt .

1
Example 2. Find | (1+sinx)3 cosxdx.

1 1 4 4

Solution. I(1+sinx)3 cosxdx:J‘t3dt:%t3 +C =%(1+sinx)3 +C, where t =1+sinx.
Example 3. Find j Y+ +2
4 1=t dx=4t3t
Solution. j X* +2 —X+ . X a_
x=t"-1.

3
J‘E4t3dt = 4J‘(t2 +2t)dt :%t3 +4t2 +C = %(x +1)4 +4Jx+1+C.

Exercise Set 7
Evaluate the integral

1 d—x 2. .e & . 3 .Q/;“Lde
J1+Vx+3 . V4 - 3x U

4. | xvJ1-2xdx. 5. .e”5+x ax . 6. .3—\')(+1+3dx.
. J \JO+X J Jx+1
* dx [ vax  dx 1

7. | ——. 8. le . 9. dx
J2+43-x J 4 —3x J Ux +4x

2.3.4 Integration of Rational Functions
The relation of two polynomials is called the rational function (rational fraction), i.e., the frac-
P.(x)
Qp,(x)
the degree m. If n>m, that rational fraction is called incorrect ,if n <m that rational fraction is
called correct.
Theorem. Any incorrect rational fraction can be uniquely represented in the form the sum of

polynomial and correct rational fraction

tion of the form , Where P, (x)-the polynomial of the degree n, Q,(x) -the polynomial of

P _ M(x) + R(x) :
Q(x) Q(x)
x° —3x* +5x> —1
Example 1. Rational fraction of the form T is incorrect.
X° —2X

Solution. Since the degree of numerator (n=5) is more than the degree of denominator
(m=3). We divide the polynomial of numerator “by corner” into the polynomial of denominator.
Then in the quotient we obtain polynomial M(x), and in the remainder polynomial R(x).
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5 a4 3 2 _
X* —3x" + 5x 1=x2—3x+7—6x 14x+1'

x° —2x x° —2x
The rational fractions of the following forms are called the simplest rational functions:
1_i; 2.2AX—+B,whereD:p2—4q<O;
X—a X +pX+q
32 msimeN; 4. B hoomsimeN.
(x—a)" (X“ +px+q)"

Integration of such functions:

(A 4x=Aln|x—a|+C,
J X—a

A dx:AI(x—a)‘md(x—a): (x—a)™'+C,
J(x—a)" —m+1
[_AeB
Jax“+bx+c

It is necessary to isolate the perfect square in the denominator of integrand in square trinomial

b b2 b? b\ b
ax’ +bx+c=a| X* +2X—+— [+c——=a| x+— | +c——.

2a 43’ 4a 23 4a

Then to make the variable x +£ =t,x=t —E, dx = dt.

23 2a
Example 2. Find | _ X

2X° +2X+5
Solution.
1
I 2I X+§ ] 2.[ 2 at=1.

2x° +2x+5 ( J L9 | dx—dt

4

Theorem. It is possible to uniquely represent each correct rational function P(%(x) in the

form of the sums of the simplest rational functions.
We factor the denominator as
Q(x) = (x—a)*(x=b)(x% +px+q)(x2 + px+q)™.
Then rational function can be represented in the form

P(x) A N A, A N B N Cx+D N Ex+F

+ .4

Qx) (x—a)f (x—a) x—a X-b x2+px+q (x*+px+q)"
E.x+F, - E. x+F,
(X2 +px+q)™ X2 4+pX+q

where A, A,,---,A,,B,C,D,EF,,--- E,F, —are real numbers, which must be determined.

In the obtained decomposition we reduce both parts to the common denominator. We make
level numerators. Obtained equation is correct for any x. We find unknown coefficients either
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by the method of particular values or equalizing coefficients with the identical degrees x, or
combining these two methods.
Example 3. Find

2%° —X+3 X% +4 2% —3x+1
a |=j—dx. b) | =J—dX- c) | =I—dx
M X2 + X2 — 2x 2 I3 (x+1? ' 3 +1
Solution.

a) We factor the denominator as
QX) = X% +x% = 2x = X(X* + X —=2) = X(X = )(X +2).
The partial fraction decomposition of the integrand has the form:
2 -x+3  22x*-x+3 A B . C _ AX=1)(x+2)+Bx(x+2)+Cx(x~1)

Caxi-2x X(x-NDx+2) x x-1 x+2 X(X—1)(x+2)
We make level the numerators
2x% =X+ 3 = A(X—1)(X +2) +Bx(x + 2) + Cx(x —1).
The polynomials in last equation are identical, so their coefficients must be equal. Let’s
choose values of x that simplify the equation.

x=0, 3=A(-12, A:—%,
x=1, 2-1+3=3B, B:%,

x=-2, 8+2+3=C(-2)(-3), C=13(
The expansion of rational function into the partial fractions was obtained
l, :J‘de:j(i+ o jdx:§In\x\+iln\x1\+Eln\x+2\+C.
X° 4+ X" —2X 2x  3(x-1) 6(x+2) 2 3 6
b) The partial fraction decomposition of the integrand has the form:
X+4 A B C D ,E (A+Bx+Cx?)(x+ 1?2+ (D+E(x+1)x°

x3(x+1)2_x_3+x2 X (x+1? x+1 X3 (x+ 1)
We make level the numerators
X% +4=(A+Bx+Cx?)(x* +2x +1) + (D +Ex+E)X°,
X2 +4=(C+E)X* +(B+2C+D+E)X® +(A+2B+C)x* +(B+2A)x +A.
The polynomials in last equation are identical, so their coefficients must be equal. The coef-
ficients of polynomials are equal and the constant terms are equal. This gives the following
system of equations for A, B, and C.

x*  C+E=0, E=-C=-13.

x> B+2C+D+E=0, D=-B-2C-E=8-26+13=-5.
x> A+2B+C=1, C=1-A-2B=1-4+16=13.

X' B+2A=0, B=-2A=-8.

X' A=4. A=4.
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The expansion of rational function into the partial fractions was obtained
x*+4 4 8 13 5 13

— = + .
Cx+D? X ¥ x (x+1? x+1

2= x> X
¢) The partial fraction decomposition of the integrand has the form
2 -3x+1_ 2¢-3x+1 A N Bx+C
X1 (x+ )X —x+1) x+1 xP—x+1
The polynomials in last equation are identical, so their coefficients must be equal. The coef-
ficients of polynomials are equal and the constant terms are equal. This gives the following
system of equations for A, B, and C.

—£+§+13|n|x|+i—13ln|x+1|+C.
X+1

A+B=2, B=2-A, B=2-A, A=2,
-A+B+C=-3, < C=1-A, =<:C0=1-A, &< B=0,
A+C=1. -A+2-A+1-A=-3. —-3A=-6. CcC=-1.

The expansion of rational function into the partial fractions was obtained
1
2x% —3x +1 2% dx X=2)
| =I—dx=j - 2In| x+1 I =
3 3 (x +1 X2 —x+ 1) X+l

X +1 ) +i
2 4
2 2x —1
=2In|x+1|——=arct +C
| x+1] 7 g 7
Exercise Set 8
Evaluate the integral
F (X+2)dx F xdx F xdx
1. 2—. 2. 2—- 3. 2—-
J 2x°+6x+4 JX“+6x+14 J 2x°+4x+9
F x—4 x>+ x4 -8 e x3 +1
4. | ——dx. 5. | ———dx. 6. dx.
J x?_5x+6 J X —4x " J x3—x? *
. 2 ay .2 .
g S R Y
J (x=1)(x*-2x+5) Jx* -1 Jx*+1
2xd 3 _9y2 _ 2
10"[ x2x y 11.."4x 22x +26x 1dx. 12.-“ : 2X° =171 .
(x+1)(x* +1) (x° =1) (x° +16x)(x —3)
2 2x -3
13.J' T g J'X X8 o 15, sz—dx
(x +2)(x° +4) X —4x (x“=1)(x+2)

2.3.5 Trigonometric Integrals
In this section we use trigonometric identities to integrate certain combinations of trigono-
metric functions. We start with powers of sine and cosine.

a) If J. sin®™ xcos® xdx (m>0,n > 0),element of integration must be converted with the
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aid of the formulas of reduction in the degree

o 14c0s2X .9 1-00s2x
COS“ X = B sin“x = :

b) If Isinmxcosnxdx, J‘ sinmx sinnxdx, I cosmxcosnxdx, the multiplication of trigo-

nometric functions should be replaced with the sum
sinmxcosnx = % (sin(m+n)x + sin(m—n)x),

sinmxsinnx = %(cos(m —n)x —cos(m+ n)x),
COSMXCOSNX = %(cos(m —N)X + Ccos(m+ n)x).

c) If IR(sinx,cosx)dx where R -the rational function of its arguments, with the aid of the

universal trigopnometric substitution t = tgg it is led to the integral of the rational function vari-

able t.
tggz t, sinx:12—tt2
IR(sin X,C0s X)dx = ) s IR1(t)dt.
1—t 2dt
CoSX =—, dx =—
1+1 1+1

d) If R(—sinx,cosx) = —R(sinx,cos x), the substitution is used t =cos x.
e) If R(sinx,—cosx) = —R(sinx,cos x), the substitution is used t = sinx.
f) If R(—sinx,—cosx) =R(sinx,cos x), the substitution is used t = tgx.

Example 1. Flndj tg 3X
sin? x
Solution.
3dx
t = ctg3x dt=———
6 ’ ) 7
jc_tgfx dx = sin' 3x :—1It6dt=—it7+C:—Ctg X,
sin” 3x dx _ dt 3 21 21
sin?3x 3
Example 2. Find I sin® 2x cos* 2xdx .
Solution.
t = cos2x, dt = —2sin2xdx

J'sin3 2xc0s* 2xdx = j sin? 2xcos* 2xsin2xdx = [sin? 2x = 1— cos? 2x = 12, sin2xdx = —%dt _

7 5 7 5
—1_[(1—t2)t4dtzlj(t6—t4)dt Y o_cos2x cos"2x
2 2 1410 14 10
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Example 3. Find jsinz X C0s% Xdx.

Solution.
J.sinzxcosz xdx = %J‘(Zsinxcosx)zdx: %Jsin22xdx: %11_COS4de:
1 1 1. 1 1.
= —j(dx—cos4xdx): —(x——sindx)+C= —x——sindx+C.
8 8§ 4 8§ 32
Example 4. Find _[ tg%dx
Solution.
t=tgx, x=arctgt 5
t°dt
t5dx_ dt :J. :I j—dtz —Z:
jg dx =—. 1+12 1+t2 1+t2 ‘
1+t
J. J I (z—1+ :1(Z——z+ln|z+1|)
2 1+z z+1 2 z+1 2 2

4(tg X — 2tgx + 2In(1+ tg?x)) + C.

Example 5. Find jsinxsin3x sin2xdx.
Solution.
jsinxsin3x sin2xdx = %I(cost —Cos4x)sin2xdx =

= %Icostsiandx —%jcos4xsin2xdx :%jsin4xdx —%j(sinGx —sin2x)dx =

cos4x cosbx Cos2x

=— + — +C.
16 24 8
Example 6. Find j , dx .
2sinX+3cosx+5
Solution.
gi=t k=20
dx B 2 T+t _J‘ 2dt 3
2sinX +3CoSX+5 1—-t2 . ot | 5., 4t 1—t?
COSX=——>, Sinx=—— 1+1 +3 +5
1+ t2 1+t2 ( )(1+t2 1+ t2 )
2dt dt dt t+1
4t +3—-3t° +5+5t t“+2t+4 (t+1)°+3 \/— \/_
1+tgX
= —arctg—gA+C.
NN
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Example 7. Find I

1+ sin’ x
Solution.
dx dx B J‘ dx _ J‘ dictgx) 1 arCtgctgx
1+sin®x  J 2sin®x+cos®x  J sin®x(2+ctg®x) ctgx+2 2 V2
Exercise Set 9
Evaluate the integral
1 tg” 3x dx. 2. | sin” xcos® xdx. 3. | sin* xcos® xdx.
J cos? 3x © *
4. o _ 5. | cos3xsin6xdx . 6. dx
J cos* 5x . J sin? x — 2sinxcos x — 3cos? X
7. .ﬂdx. 8. | Ycos’ x sin2xdx . 9. | cos* 2xdx.
J 16— cos 8x v v
10. J' 1. jsin3x0035xdx. 12__[ dx ,
sin* xcos?x | 3sinX +cos X +1
. 3
13."‘ . . 14.J'sm X 4y 5 J‘ cos* +sin* x
163|n2X+0052X cos* x cos? X — sin’ x

2.3.6 Integration of Nonrational Functions
Let us examine such nonrational functions, whose integration is reduced with the aid of the
specific replacement of the variable of integration to the integration of some rational functions.

a) IfJ‘ Ax+B

\/ax +bx+c

It is necessary to isolate the perfect square in the denominator of integrand in square trino-

mial
) , b b b b ¥ b
ax“+bx+c=al X" +2X—+— [+C——=a| X+ — | +C——.
2a 4a 4a 2a 4a
Then to make the variable x +£ =t,x=t —i, dx =dt.
2a 2a
. 3x—1
Example 1. Find _[ Sl B
VX% —4x+8
Solution.

x— =t dx= dt‘ 3t+5

J' 3x—1 dx—j 3x—1
VX2 —4x+8 A (X— 2 +4 \/t2
2
=3J' tt +5j _[”4 j — 3P +4 15[t +4]4+C =
N N Vt2+4
=3 x2—4x+8+5ln|x—2+\/x —4x+8|+C.
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O , we must use next substitution 1 =t.
. (x—a)”\/ax2+bx+c X—a
c) If R(X,W Ux,-,Yx )dx, where R -the rational function of its arguments, we must use

next substitution x =t", (n- all least common multiple indices k,m,---,s,).
d) If |R(x,Yax+b)dx, we must use next substitution ax+b =t".

e) If j R(vx? —a? ,x)dx;IR(\/ X +a° ,x)dx;J'R(\/a2 —x?,x)dx, where R-the rational

function of its arguments, we must use trigonometric substitution.
In the following table we list trigonometric substitutions that are effective for the given radi-

cal expressions because of the specified trigonometric identities. In each case the restriction
on @ is imposed to ensure that the function that defines the substitution is one-to-one.

b) If

Table of trigonometric substitutions

Expression Substitution |dentity
Ja?—x X=aSin9,—gS9Sg 1—sin? @ = cos?
1
Ja? 4 2 x=atgh,—~ <0<~ 141g%0 =
a +x 9 2 2 ; cos’ 9
J x=—0<f< 1htgh=—
cos” & 2 cos“ @
Example 2. Find &fx
Solution.
j S| x=t°, dX=6t5dt_J‘t36t5dt—6j J dt =
J;:t?’, 3y =12 to —t4 t4(t? —
1 ; §/x - 1
_6_[ it 6_[ e d=2t +6t+3|n|—|+C 2% +6%/x +3In |~
-1 \/_+
Example 3. Find I de .
\/x+1 \/(x+1)5

Solution.
x+1=t%,  dx=6t>dt

.[ ~ j (t° —1)6t°dt 5 J- (t°—1)t°dt

\/x+1 x+1 \/6 +1=t, Yx+1=t? - t° t(t°-1)
4

=6!(t3+1)dt=6(tz+t)+C:%\3/(x+1)2+6\6/x+1+C.

x3dx

Example 4. Find J' |
V2-x2
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Solution. We must use trigonometric substitution x = J2sint.

x=\/§sint, 3
x3dx (\/5) sin’t-+/2 cost
j = dx:\/§costdt, :j
V2 cost

J2—x
, 2\
:—2x/§j(1—coszt)d(003t)=—2*/§(C°St+coz t}rcz_z 2_X2+@+C'

dtzzﬁ_[sin%dtz

Exercise Set 10
Evaluate the integral

1+ 4x 5 [ dx o Jxdx
1. dx. : 7 . 3 | X
J1++/x J Vax—1-Yax—1 Ve _a

4.

d—x. 5. .x3\/9—x2dx. 6. [ /1—_xd_x

J XX -1 * JV1+x x

RIS ix CVX +4 9. | x°-3(1+x°) dx .
X

1. 8. >—dX. J
o v X
10. J.x- 4 x2dx. NI 12._[ 25— x2dx.
11. > dx.
X

2.4 Areas and Distances
In this section we discover that in trying to find the area under a curve or the distance trav-
eled by a car, we end up with the same special type of limit. We begin by attempting to solve
the area problem: find the area of the region that lies under the curve y =f(x) from a to b.
This means that, illustrated in Figure 2, is bounded by the graph of a continuous function f
[where f(x) > 0], the vertical lines x=a and x=b, and the -x axis.

¥i

¥= fix)

Figure 2

However, it isn’t so easy to find the area of a region with curved sides. We all have an intui-
tive idea of what the area of a region is. But part of the area problem is to make this intuitive
idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by
slopes of secant lines and then we took the limit of these approximations. We pursue a similar
idea for areas. We first approximate the region by rectangles and then we take the limit of the
areas of these rectangles as we increase the number of rectangles (Figure 3).
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Ax

Figure 3

The width of the interval [a,b] is b—a, so the width of each of the n strips is Ax :b;a.

These strips divide the interval [a, b] into n subintervals [a,xq].[X,X; ].[X2,X3 ][ Xos,b]-
Let's approximate the i—th strip by S, a rectangle with width Ax and height f(x;), which is
the value of f at the right endpoint (see Figure 3). Then the area of the rectangle is f(x;)Ax;.

What we think of intuitively as the area of is approximated by the sum of the areas of these
rectangles, which is
R, = (X)) AXq + (X)) AXy + ...+ (X)) AX, .
Definition. The area A of the region S that lies under the graph of the continuous function f

is the limit of the sum of the areas of approximating rectangles:
n

A=IlimR, =1lim » f(x)Ax
N—o0 N—o0 —
It can be proved that the limit in definition always exists, since we are assuming that f(x) is

continuous.

2.5 The Definite Integral

We saw in Section 2. that a limit of the form
n

limR, = lim » f(x,)Ax
N—o0 n—o0 —
arises when we compute an area. It turns out that this same type of limit occurs in a wide vari-
ety of situations even when is not necessarily a positive function. We therefore give this type of
limit a special name and notation.

Definition of a Definite Integral. If f(x) is a function defined for a<x <b, we divide the

i @

interval [a,b] into n subintervals of equal width Ax _5272 Weleta- XgsX1,Xp,-, X, =D b
n

the endpoints of these subintervals and we let x,X5,...,X; be any sample points in these subin-
tervals, so lies in the i th subinterval [xI 1»X;] . Then the definite integral of ffrom ato b is

_[f X)dx = lim f( ") AX

n—0

provided that this limit exists. If it does exist, we say that is integrable on [a,b].
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Note 1. The symbol J. was introduced by Leibniz and is called an integral sign. It is
b
elongated and was chosen because an integral is a limit of sums. In the notation If(x)dx f(x)

a

is called the integrand and a and b are called the limits of integration; a is the lower limit
b

and b is the upper limit. For now, the symbol dx has no meaning by itself; jf(x)dx is all one
a
symbol. The dx simply indicates that the independent variable is x. The procedure of calculat-

ing an integral is called integration.
b

Note 2. The definite integral J. f(x)dx is a number; it does not depend on x. In fact, we

a
could use any letter in place of x without changing the value of the integral:

b b b

j f(x)dx = j f(t)dt = j f(u)du.
a a a

Note 3. The sum

if(xi"‘)Axi
=

that occurs in last Definition is called a Riemann sum after the German mathematician Bern-
hard Riemann (1826-1866). So last Definition says, that the definite integral of an integrable
function can be approximated to within any desired degree of accuracy by a Riemann sum.
Theorem. If f(x) is continuous on [a,b] , or if f(x) has only a finite number of jump discon-
b

tinuities, then f(x) is integrable on [a,b] ; that is, the definite integral jf(x)dx exists.

a
Properties of the Integral
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b b
d. jcf(x)dx = cjf(x)dx, c =const.
a

a

b b

6. 1Ff(x)> 0 (f(x) <0) on [a, b], then '[ f(X)dx >0 ( _[ f(x)dx < 0).
ab . a

7.1ff(x)> o(x) x [ab] a<b, then _[ f(X)dx > _[ o(x)dx.

b
8. 1f m<f(x)<M, then m(b—a)< If(x)dx <M(b—a).

The Fundamental Theorem of Calculus (Newton and Leibniz Theorem).
Suppose f(x) is continuous on [a,b].

1. 1f F(x) = _[ f(t)dt, then F/(x) =f(x).

b
2. J. f(x)dx =F(b)—F(a) , where F(x) is any antiderivative of f(x), thatis, F'(x) =f(x).
a

The Fundamental Theorem of Calculus says that differentiation and integration are inverse
processes. Each undoes what the other does. The Fundamental Theorem of Calculus is un-
questionably the most important theorem in calculus and, indeed, it ranks as one of the great
accomplishments of the human mind. Before it was discovered, from the time of Eudoxus and
Archimedes to the time of Galileo and Fermat, problems of finding areas, volumes, and lengths
of curves were so difficult that only a genius could meet the challenge. But now, armed with
the systematic method that Newton and Leibniz fashioned out of the Fundamental Theorem,
we will see in the chapters to come that these challenging problems are accessible to all of us.

2.6 Rules of the Calculation of the Definite Integral
1. Formula of Newton — Leibniz. If f(x) is continuous on [a,b]
b

j f(x)dx = F(b) — F(a).

a
2. Replacement of variable in the definite integral. If f(x) is continuous on [a,b], the func-

tion x=(t) it is differentiated in the section [«,3], and te[a,(3], ®(t) €[a,b], d(a)=a,
d(3)=b, then

b §]
j f(x) = j f(o()o'(t)dt



3. Evaluate definite integrals by parts
b

ju(x)dv(x) = Uu(x)v(Xx)

a

b
2 —jv(x)du(x).

4 j f(x)dx = 0, if F(—x) = —f(x);

a a

j f(x)dx = 2 I fx)dx i f(=x) =f(x).
-a 0

8
Example 1. Calculate j(§/§ —1)dx.

1
Solution. Using the formula of Newton — Leibniz for this integral, however, we have
8 8 1 4

[@x—tax= [0 - =Cxr —0ft =C-2-8)-C - =12-8-075+1=425
1 1
B3
H 1-x
Example 2. Calculate j >—dx
X
N7
2
Solution.
i3 t,  dx=costdt | 3 3
X = sin X = COS
j‘ 1—x2dx_ 7 7 3 j"cosztdt_ j‘1—sin2tdt_
X2 x=—2,t:3, x:—3,t:E sin’t sin’ t
V2 2" 4 2" 3 = L
2 4 4
> 1 = T
= (—ctgt—1)|3 = —(ctlgm +2) +(Algm+—) = —(——+ )+ (1+—) =
(=2 =~(elg+3) 4o+ )= ~(Fghelie
1
1- = ~0,161
12 3

Example 3. Calculate 1= lenxdx .

e

Solution. Using the formula for integration by parts we get
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=Inx du—d—x e?
’ x| X%l [xidx e* . e? X}l 4 % et €
| = =(—Inx)|q —J‘—:—-Z————e g ————+—=
x2| 2 X 2 2 4 2
dv=xdx, v=— e
=1(3e4 —e?) ~39,10.
4
5
Example 4. Calculate jd—x
' ) 2+4/3x+1
Solution.
A 3X+1=t x=0=>t= 2
dx 1 0 §t
J'—= X=(t2—1), x=5= t=4 =J—dt=
244/ 3x+1 32 ! 2+t
dx =—tdt
3
2 P tdt 2 Fte2-2. 2 2 24 )
=—.J—=—-I oo dt:—-I(1——jdt:—t In[t+2]
31t+2 31 t+2 31 t+2 3
1
=§ 2 iIn6—£|n3 2+—In2~2,924.
3 3 3
Exercise Set 11
Calculate
2 9 e? ’ In2 ’
1.j(2x2+—jdx. 2'_[ X , 3..[ X
1 x* 1x\/1+lnx ] e¥\/1—e ¥
3 ’ 72 4 9
4, I—Xz 5. I\/cosx cos® x dx. 6._[ :( _5)(; 4dx.
> V4Xx—3-X _% n XX
1 1
2X—3 dx
7 I—dx. sj 9. j—
Ox2—2x+5 x+\/2x 0x2+4x+8

1. I(x+2)0033xdx.
0



2.7 Improper Integrals
b

In defining a definite integral jf(x)dx we dealt with a functionf defined on a finite interval

a
[a,b] and we assumed it does not have an infinite discontinuity. In this section we extend the con-

cept of a definite integral to the case where the interval is infinite and also to the case where f has
an infinite discontinuity in [a,b] . In either case the integral is called an improper integral.

2.7.1 Type 1: Infinite Intervals

Definition of an Improper Integral of Type 1.
t

(a) If If(x)dx exists for every number t > a, then

a

t—+o0

+00 t
_[ f(x)dx = lim j (), (1)

provided this limit exists (as a finite number).
b

(b) If jf(x)dx exists for every number t <b, then
t

t—+o00

b b
j f(x)dx = lim j f(x)dx, )
—0 t

provided this limit exists (as a finite number).

+00 b
The improper integrals If(x)dx and J. f(x)dx are called convergent if the corresponding

a —00

limit exists and divergent if the limit does not exist.

+00 a
(c) If both jf(x)dx and j f(x)dx are convergent, then we define

a

t—>—o0 t—+o0

+o0 - 3 oo . t
_J;f(x)dx: J;f(x)dx+ _!f(x)dx= lim _!f(x)dx+ lim !f(x)dx, (3)

In part (c) any real number can be used.
Any of the improper integrals in Definition 1 can be interpreted as an area provided that f is

+00
a positive function. For instance, in case (a) if f(x)>0 and the integral j f(x)dx is conver-
a

gent, then we define the area of the region in S = {(x,y)ix >a,0<y< f(x)} Figure 4 to be
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¥i
¥= flx)
L4
o a I
Figure 4
+00 )
Example 1. Evaluate I xe " dx.
0
Solution.
+00 ) 1+oo ) 1 b , 1 )
—Xd:__J —Xd_2:__|' J‘—Xd_2:__|' —X b:
ez o= im Jo ooty =g im0
0 0 0
1 1 10 1

=—— lim —+-e’=—.
2b—)+ooeb 2 2

Example 2. Evaluate J‘% dx.
x-(9+|n x)
1
Solution.

o0

b
j%dx: lim J‘%dx: lim _[Zd('”zx):
1x-(9+|n x) b—>-+o0 1x-(9+|n x) b—>+o0 1 9+In“x

b

: 1
= lim 2-§arctg( In|x|)

b—+o0

= % lim (arctg(Inb) —arctg(In1)) :%

1 b—+o

w3

T
2

2.7.2 Type 2: Discontinuous Integrands
Definition of an Improper Integral of Type 2.

(a) If f is continuous on [a,b) and is discontinuous at b, then

b b—e
j f(x)dx = lim j f(x)dx (4)
e—>0

a a
if this limit exists (as a finite number).
(b) If f is continuous on (a,b] and is discontinuous at a, then

b b
j f(x)dx = lim j £(x)dx (5)
a a+d

if this limit exists (as a finite number).
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b
The improper integral jf(x)dx is called convergent if the corresponding limit exists and

a
divergent if the limit does not exist.

(c) If has a discontinuity at ¢, where a<c<b, and both If(x)dx and If(x)dx are con-

a C
vergent, then we define

jf(x)dx:jf(x)dx+jf(x)dx— im _[ f(x)dx+ fm j (x)dx (6)

c+d
Parts (a), (b) and (c) of Definition are illustrated in F|gure 5 for the case where f(x) >0 and

has vertical asymptotes at a,band ¢ respectively.
¥

¥
¥= fix) 5§
i) - T o at b 1 - 5 5
Figure 5
2
Example 3. Evaluate X
' J2-x
Solution.
2 2— 1
—lim | (2—x) 2d(2—x)=—1im2 26——2I'm 2\2 =24/2.
e L R e e

2

4
Example 4. Evaluate I d—x
X 6x+9

Solution.
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4 4

=— Iim( r__ ]:
3+8 8—+0{ 4-3 3+B—3

lim J. d >=— lim —
B—>+0 (x=3) B>+0 X—3
3483

Improper integral divergent, since limits are equal to infinity.

2.7.3 A Comparison Test for Improper Integrals
Sometimes it is impossible to find the exact value of an improper integral and yet it is im-
portant to know whether it is convergent or divergent. In such cases the following theorem is
useful. Although we state it for Type 1 integrals, a similar theorem is true for Type 2 integrals.
Comparison Theorem. Suppose that f and g are continuous functions with
f(x)>g(x)>0 forx>a .

+00 +00

(a) If | f(x)dx is convergent, then j g(x)dx is convergent.
.a a

1
(b) If | g(x)dx is divergent, then jf(x)dx is divergent.

a
We omit the proof of the Comparison Theorem, but Figure 6 makes it seem plausible.
If the area under the top curve y =f(x) is finite, then so is the area under the bottom curve

y =9(x). And, if the area under y = g(x) is infinite, then so is the area under y =f(x).
¥4

=
[
o

Figure 6

+00

Example 4. Evaluate j 2+ SinX

b Jx

Solution. Let us estimate integrand for all x from the space of integration, we will obtain the
inequality

dx.

2+S|nx
f Nt
dx dx .
—_ —2 | :2 | —2: .
\/— b—)oo f biﬂo\/_‘1 bl—r:lo\/B .

This means that th|s integral is d|vergent.
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Exercise Set 12

Evaluate
o0 o0 4

" 2dx | 2.J. : dx | 3J‘ xdx 4J‘3X +2
- X (x+1) dXT+2%+2 1\/x 1
1 d 0 d 25
¥ X X

5[ af-————, 7J &Isme
J x5 —6x2 ) X2 —4x? ) X2 — 5x+6

2.8 Applications of Integration
In this chapter we explore some of the applications of the definite integral by using it to
compute areas between curves, volumes of solids, and the work done by a varying force. The
common theme is the following general method, which is similar to the one we used to find ar-
eas under curves: We break up a quantity Q into a large number of small parts. We next ap-

proximate each small part by a quantity of the form f(x{)Ax; and thus approximate Q by a

Riemann sum. Then we take the limit and express Q as an integral. Finally we evaluate the
integral using the Fundamental Theorem of Calculus.

2.8.1 Areas Between Curves
Here we use integrals to find areas of regions that lie between the graphs of two functions.
Consider the region S that lies between two curves y =f(x) and y =g(x) and between the
vertical lines x=a and x=b , where y=f(x) and y=g(x) are continuous functions and

f(x) > g(x) for all x in [a,b] (See Figure 7)

F=fix)

&

bz

i

¥=gl1]

Figure 7
The area A of the region bounded by the curves y =f(x), y
x=b, where y =f(x) and y =g(x) are continuous and f(x) > g(x

b
S:jmm—

NMeLHy:mn:OHmnS:Iﬂmw

=g(x), and the lines x=a,
) forall x in [a,b], is

a
Note 2. If we are asked to find the area between the curves y =f(x) and y =g(x) where
f(x) > g(x) for some values of x but f(x) < g(x) for other values of x, then we split the given
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region into several regions S;,S,,S;,... with areas A;,A,,A,,... as shown in Figure 8. We

then define the area of the region S to be the sum of the areas of the smaller regions
81,82,83,..., that |S A = A1 +A2 +...

’ F=glxh
¥ = fix)

ﬂ| a b ox
Figure 8

The area between the curves y =f(x) and y =g(x) and between x=a and x=b is
b

5= I (x) — g(x)|dx.
a
Note 3. If the curve is assigned by the parametric equations x = x(t),y = y(t), the area A of

the region bounded by this curve is
)
S= j y(t)-X(t)dt, where a=x(a), b=x()

Note 4. Area of figures in the polar coordinates (See Figure 9 and Figure 10) is

Figure 9 Figure 10

Example 1. Find the area enclosed by the line g(x) = —x+1 and the parabola

f(x) =—x2+2x+5.
Solution. By solving the two equations we find that the points of intersection are (—1;2),
(4,-3):
f(x) =g(x),
X +1=—x? +2X+5,
x> —3x—4=0,
Xy =-"1x,=4,
Y1 =2y, =-3.
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4 4 4
Thus S=j(f(x)-g(x))dx=j(-x2+2x+5-(-x+1))dx=j(-x2+2x+5+x-1)dx=
-1 -1 -1

4

4 X3 X2
=j(-x2+3x+4)dx= X 3.5
1 3 72

=(_§+3.§+4.4j-[-('1) +3.(';) +4.(_1)]=

-1

3
= _%+24+16 - 1+§_4 =_%+40_1_§+4=44_§_§=
3 3 2 3 3 2 3 2
—44-212.11 =922 1 99 T 52,
3 2 3 2 6 6

X =2c0s’ t
Example 2. Find the area enclosed by the curve :
y= 2sin’t
Solution. These equations determine astroid (See Figure 11). Since figure is symmetrical

relative to coordinate axes, then let us find area its fourth, which lies at the first quadrant.
¥

Figure 11
X(t)=2-3-cos’t-(~ sint) =—6-cos’t-sint.
to

Thus S = _[ y(b)- X ()t

tq

0 2 3
S =j23in3t-(—6 coszt~sint)dt :1ZJsin4t-coszt dt=3 Isinz 2t-sin’t dt =
i 0 0
2
2 2 2
=3jsin22t-1_"°32t dt:%IsinZtht—%jsin22t-0032t it =
0 0 0
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T

2_dn
8

N |3

1=cosdt 43 [sin22td(sin2t) = >t
2 ¢ 4

2_1gndat
4

23 sinat
16 |,

3
2 0

0

O'—‘l\)\ﬂ

After multiplying the obtained area to 4, we will obtain the area of the entire of the astroid

3t 37w
S Lstroid =4-S:4-?:7z4,712

2.8.2 Volumes

In trying to find the volume of a solid we face the same type of problem as in finding areas.
We have an intuitive idea of what volume means, but we must make this idea precise by using
calculus to give an exact definition of volume.

For a solid S that isn’t a cylinder we first “cut” S into pieces and approximate each piece by
a cylinder. We estimate the volume of S by adding the volumes of the cylinders. We arrive at
the exact volume of S through a limiting process in which the number of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a cross-
section of S.

Let A(x) be the area of the cross-section of S in a plane P, perpendicular to the x - axis

and passing through the point x, where a<x <b. (See Figure 12). Think of slicing S with a
knife through x and computing the area of this slice.) The cross-sectional area A(x) will vary

X asincreasesfromatob.

Figure 12

Definition of Volume. Let S be a solid that lies between x=a and x=b. If the cross-
sectional area of S in the plane P, through x and perpendicular to the x-axis, is A(x), where

A(x) is a continuous function, then the volume of S is
b
vszumx
a

Note 1. The volume of the solid in Figure 13, obtained by rotating about the y-axis the re-
gion under the curve y =f(x) from ato b, is

b b
Vo =x j Px)dx (V, =2n j Xf(x)dlx).
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¥
¥= fiz}

Figure 13

Note 2. If curvilinear sector revolves around the polar axis, then the volume of body of revo-
5

lution is found by the formula V = %w“-ﬁ’(ap) -Sinp dep.

Example 3. Find the volume of the solid obtained by rotating the region bounded by
y=x-x%and y =0 about the line x=2.
Solution. Figure 14 shows the region and a cylindrical shell formed by rotation about the line
x =2. It has radius 2—x, circumference 2r(2—x), and height x— x°.
Yi

Figure 14

The volume of the given solid is
1 1
4
V= I2ﬂ(2 —X)(x —x%)dx = 2’KJ.(X3 — 3% +2x)dx :2’TT(XT —x3+ XZ)Z) = %
0 0

2.8.3 Arc Length

What do we mean by the length of a curve? We might think of fitting a piece of string to the
curve in Figure 15 and then measuring the string against a ruler. But that might be difficult to
do with much accuracy if we have a complicated curve. We need a precise definition for the
length of an arc of a curve, in the same spirit as the definitions we developed for the concepts
of area and volume.

If the curve is a polygon, we can easily find its length; we just add the lengths of the line
segments that form the polygon. (We can use the distance formula to find the distance be-
tween the endpoints of each segment.) We are going to define the length of a general curve by
first approximating it by a polygon and then taking a limit as the number of segments of the
polygon is increased. This process is familiar for the case of a circle, where the circumference
is the limit of lengths of inscribed polygons (see Figure16).
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Figure 15 Figure 16

Now suppose that a curve C is defined by the equation y =f(x), where fis continuous and
a<x<b. We obtain a polygonal approximation to C by dividing the interval [a b] into n sub-
intervals with endpoints a = xy,X,X,,...,.x, =b and equal width Ax. If y; =f(x;), then the
point P(x;;y;) lies on C and the polygon with vertices P,,P,,P;,... illustrated in Figure 17, is an
approximation to C.

¥y P
|
|
|
|
|

Figure 17

The length L of C is approximately the length of this polygon and the approximation gets
better as we let n increase.
The Arc Length Formula. If y =f(x) is continuous on [a,b], then the length of the curve

y=f(x),a<x<bis

f!2

m'—.cr

Note 1. If a curve has the equation x =d(y),c <y <d, and x=(y) is continuous, we ob-
tain the following formula for its length:

d
= j\/1 +0%(y)dy.

Note 2. If curve is assigned by the parametric equations x = x(t),y = y(t),t € [a,[3], we ob-
tain the following formula for its length:

5
|= | /X2(t)+y2(t)dt.
Jv

Note 3. If it is known that the polar equation of arc AB is r =r(d), & €[a,(3], the length of its

arc is equal:
)

= j () +r2()dep.

Q
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2 _ 3
Example 4. Find the arc length function for the curve yo= (X+1) ’
—1<x<0.

Solution.

b
For calculation the arc length of this line we will use the formula: 1= j \ 1+(y’)2 dx

The line is symmetrical relative to X-axis. Therefore we will search for the length of the line
lying at second fourth.

3
y=(x+1)2.

1

Let us calculate the derivative y' = g(x +1)2.

Thenl_j\/1+£ x+1)2 jdx j/ 2 (x+1) Ox+13dx =

0

3
11 (9x+13)2 1( 3 ) 13,/13 -8
S A LN VAR B
27

29 3 27

2

-1
L=2-I=2-13\/21?_8 :26@‘16 ~2.879.

Example 5. Find the arc length function for the curve r =3(1+cos ).

Solution. Cardioid is a curve symmetrical relative to polar axis. Let us calculate the arc
length of that lying on top from the polar axis (See Figure 18).

(Y
_/

Figure 18

For calculating the arc length of this line we will use the formula

5
I:I Jri+(r)’ de
Let us calculate the derivative r'=—-3 sinyp. Then
| = j\/9(1+cosw)2 +9sin® pdy = 3J \J2+2cospdyp = 6](:03% do :123in§
0
0

0 0
Consequently, the length of the entire cardioid is equal L =2-1=2-12 = 24.
23

=12.




2.8.4 Work
The term work is used in everyday language to mean the total amount of effort required to
perform a task. In physics it has a technical meaning that depends on the idea of a force. Intui-
tively, you can think of a force as describing a push or pull on an object - for example, a hori-
zontal push of a book across a table or the downward pull of the earth’s gravity on a ball.
Let under the action of force F (s) the material point move along straight Os. The work of
this force in the section of way [a, b] is determined from the formula

A= j.F(s)ds.

Exercise Set 13
To calculate the areas of the figures, limited by the assigned lines:

x = 3cost
2=1- =-3. 2. ’ 3. r=a(1+coso). v —x2 42
1.y"=1-x, x=-3. {y:5sint. (1+cos d) 4, X" +y" =x+y°.

32 2 ™
Answers:1)—: 2)15w: 3)1,5wa“; 4)—.
( ) 3 ) ) )ﬁj

X =2cost —cos2t,

2 _ 2 _ o4y = 6.
5. y°+8x=16, y —24x = 48. {y:Zsint—sinZt.

7.r* =a%sin2o.

(Answers:S)%\/E . 6)6wa’; 7) 0,5a2.j

To find the volume of the body, formed by the rotation of the figure, limited by the assigned
lines, around the axis indicated:

8.y:4x—x2, y=X, Ox.

9.y=x? 4x-y=0, Oy.

1O.y:x3, x=2, y=0, Ox.

Find the length of the arc of the curve from x, to x,:

1. y=In(1-x%), x,=0, x,=0,5. 12. x=e'cost, y =e'sint, t,=0, t, =Inm.

13. y=Incosx, x;=0, XZ:% 14. x =acos’t, y=asin3t, t,=0, t,=2~.

15. y=§ (x=1°, x,=1, x,=4. 16. y =\1—x% +arcsinx, x, =0, xzz%.
Find the exact length of the polar curve

17. 1 =24, where ows%. 18. r=3(1+sinyp).

19, r =/2€*, where ‘@‘Sg. 20. p=2(1-cos o).

21. r=sin3£%j. 22. r=3(1-cosy).
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2.9 Applications to Physics and Engineering
Among the many applications of integral calculus to physics and engineering, we consider
one here: centers of mass. As with our previous applications to geometry (areas, volumes, and
lengths) and to work, our strategy is to break up the physical quantity into a large number of
small parts, approximate each small part, add the results, take the limit, and then evaluate the
resulting integral.

Moments and Centers of Mass
Our main objective here is to find the point on which a thin plate of any given shape balanc-
es horizontally as in Figure 19. This point is called the center of mass (or center of gravity) of
the plate.

Figure 19
If we have a system of particles with masses m,,m,,...,m, located at the points x;,X,,...,X,

onthe x -axis, it can be shown similarly that the center of mass of the system is located at

x=-= (1)

n
The sum of the individual moments M :Zmixi is called the moment of the system
i=1
about the origin. Then Equation 1 could be rewritten as mx =M, which says that if the total
mass were considered as being concentrated at the center of mass x, then its moment would
be the same as the moment of the system.
Now we consider a system of particles with masses m,,m,,...m,, located at the points

(X43¥1),(X53¥2),--(X3Y,) inthe xy -plane as shown in Figure 20.

¥i
I
I Iy S

¥a 1
o ¥,

Xy

Figure 20
By analogy with the one-dimensional case, we define the moment of the system about

the y-axis to be
n
i=1
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and the moment of the system about the x-axis as

n
|\/lx = Zmiyi :
i=1

Then M, measures the tendency of the _system to rotate about the y -axis and M,

measures the tendency to rotate about the x-axis.
As in the one-dimensional case, the coordinates of the center of mass are given in terms of
the moments by the formulas

M, M

X=—L y=-X
M Y M

Next we consider a flat plate (called a lamina) with uniform density p that occupies a region

R of the plane. We wish to locate the center of mass of the plate, which is called the centroid
of K. In doing so we use the following physical principles: The symmetry principle says that
if R is symmetric about a line |, then the centroid of R lies on I. (If R is reflected about I,
then R remains the same so its centroid remains fixed. But the only fixed points lie on 1).
Thus the centroid of a rectangle is its center. Moments should be defined so that if the entire
mass of a region is concentrated at the center of mass, then its moments remain unchanged.
Also, the moment of the union of two nonoverlapping regions should be the sum of the mo-
ments of the individual regions.

Suppose that the region9: is of the type shown in Figure 21; that is, ® lies between the
lines x=a and x=b, above the x-axis, and beneath the graph of f, where f is a continuous
function. We divide the interval [a,b] into n subintervals with endpoints a = xg,X;,X,,.... X, =b

and equal width Ax. We choose the sample point x;" to be the midpoint Z of the i- th subin-

terval, that is Z :% This determines the polygonal approximation to R shown in Fig-

ure 22. The centroid of the i-th approximating rectangle R; is its center Ci(fi;%f(;i)). lts area

is f(x;)Ax;, so its mass is m; = pf(x;)Ax..

’ (. AT
y =i €z, 3 AE)
R
= t."\. % II;"' '|||
0| a b I EEL‘};_!:}I J-’r—LEIr T 9 %
Figure 21 Figure 22

Adding these moments, we obtain the moment of the polygonal approximation to R, and
then by taking the limit as n — oo we obtain the moment of ‘R itself about the y — axis:

b
M, = pJ.xf(x)dx.
a
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Again we add these moments and take the limit to obtain the moment of R about the x -
axis:

b
The mass of the plate is the product of its density and its area M = pjf(X)dX, and so:

a
- M - M
X=—y, —_ X

M y M

Note 1. If the plane figure is limited by the lines y=f(x), y=f,(x), xe[ab] and
0 = §(x) -the surface density of figure

M’ I
Note 2. The static moments of the material arc, assigned by equation y =f(x), x €[a,b],
relative to coordinate axes are found by the formulas

MM
Example 1. Find the center of mass of a semicircular plate of radius r.
Solution. We place the semicircle as in Figure 23 so that f(x) =vr? —x* and a=-r,b=r.
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Figure 23
Here there is no need to use the formula to calculate x because, by the symmetry principle,
the center of mass must lie on the y-axis, so x = 0. The area of the semicircle is S = %wrz , SO

3 r r 3 r 3
oo %J.(\/rzx2)2dx=iz_‘-(r2x2)dx=%{r2xx—} _2a A
T
-r 0

;Wrz T ar? 3 3n

The center of mass is located at the point (O;;—rj :
11

Exercise Set 14
Find the coordinates of the center of the masses of flat uniform figure (CI>) or uniform

curve (L):

_ 2. 2 _ oy o 2 1R
1.@) y=X"; 9 (@) Yo =2X—-2 3 ((I)) X +4y-16=0;

y=3-x y=x—1. y=0.

2 2

ye=4-x; y=X
4. (@ o. (P 6. (P) p=1+cose.

{7 @7 ()
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