МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра водоснабжения, водоотведения и теплоснабжения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению курсовой работы по дисциплине: «Водоснабжение»,

раздел: «Водозаборные сооружения»

для студентов специальности 70 04 03 "Водоснабжение, водоотведение и охрана водных ресурсов" заочной формы обучения.

УДК 628.5.543

Методические указания по дисциплине «Водоснабжение» для студентов

специальности 70 04 03 - «Водоснабжение, водоотведение и охрана водных

ресурсов» заочной формы обучения - предназначены для оказания методиче-

ской помощи при выполнении курсовой работы, раздел «Водозаборные со-

оружения».

Составители: Житенев Б.Н., доцент, к.т.н.

Бахур Н.Ф., доцент

Мороз В. В. ассистент

Рецензент: В.А. Вавринюк, зам. гл. инженера БКУП ВКХ

Учреждение образования

©Брестский государственный технический университет 2002

СОДЕРЖАНИЕ

Введение	4
1. Исходные данные, объем и состав курсовой работы	4
2. Выбор места расположения и типа водозабора	5
3. Разработка конструкции водозаборных сооружений и компо	новка
основного оборудования	6
4. Гидравлический расчет сооружений водозабора	7
4.1. Конструирование оголовка и расчет входных отверстий	7
4.2. Расчет самотечных линий	9
4.3. Потери напора в самотечных линиях при УНВ (работа в меж	
4.4. Потери напора при аварийной работе водозабора в п	
отключения одной линии при УНВ.	10
4.5. Потери напора при пропуске расчетного расхода водозабо	ра по
одной линии в паводок (при УВВ)	11
4.6. Промывка самотечных труб	11
4.7. Проектирование берегового колодца по высоте	11
4.8. Определение размеров берегового колодца в плане	12
4.9. Определение уровней воды в береговом колодце	12
5. Расчет подачи и напора насосной станции первого подъема	14
6. Мероприятия по санитарной охране водозабора	15
ПРИЛОЖЕНИЯ	17
Литература	20

введение.

Методические указания составлены в соответствии с программой по дисциплине «Водоснабжение» для студентов специальности

70 04 03 - «Водоснабжение, водоотведение и охрана водных ресурсов», заочной формы обучения.

Указания содержат основные сведения по проектированию и расчету сооружений и технологического оборудования руслового водозаборного сооружения. Приведены необходимые справочные сведения, позволяющие выполнить курсовую работу без дополнительных справочных пособий.

1. ИСХОДНЫЕ ДАННЫЕ, ОБЪЕМ И СОСТАВ КУРСОВОЙ РАБОТЫ.

Курсовая работа выполняется студентом по индивидуальному варианту. Исходные данные к проектированию студент получает на кафедре «Водоснабжение, водоотведение и теплоснабжение» во время установочных лекций.

Курсовая работа выполняется в VII семестре на тему "Водозаборное сооружение" и предусматривается проектирование водозаборных сооружений из поверхностного источника водоснабжения с решением следующих вопросов:

- -выбор типа водозаборного сооружения;
- гидравлический расчет основных элементов водозаборов на три расчетных случая;
- определение производительности и напора насосной станции 1-го подъема;

Графическая часть работы состоит из 1 листа формата A3 (12) и включает:

- разрез по водозабору с нанесением отметок воды, для трех расчетных случаев, в водоприемной и всасывающей камерах, масштаб вертикальный 1:100, горизонтальный 1:500.
- план и разрез берегового колодца, масштаб 1:20 ; 1: 25; 1:50 (см. образец).

Пояснительная записка и графическая часть курсовой работы должны быть оформлены в соответствии со стандартом института СТ БПИ – 01 – 98.

2. ВЫБОР МЕСТА РАСПОЛОЖЕНИЯ И ТИПА ВОДОЗАБОРА

Для правильного выбора источника водоснабжения, проектирования и строительства водозаборов необходимо проведение топографических, гидрогеологических и геологических изысканий. В результате исследований выявляют:

- -расходный режим и водохозяйственный баланс по источнику с прогнозом на 15...20 лет;
- -качественную характеристику воды в источнике и прогноз ее возможного изменения на 15...20 лет.
- При проектировании водозаборов следует учитывать :
- требования к качеству воды со стороны потребителя;
- санитарные требования и требования других заинтересованных органов по использованию и охране водных ресурсов;
- технико-экономическую оценку условий использования вод различных источников.

Исходя из гидрологических условий, водоприемные сооружения располагают в таких местах, где не осаждаются наносы и большая глубина реки, то есть у вогнутых берегов, при этом надо учитывать, что вогнутые берега реки подвержены размыву и разрушению, а прямые участки ненадежны из-за образования на них перекатов. Выбираемый участок русла не должен располагаться на перекате и не должен иметь резких местных сужений, перепадов, быстрин, забор (т.е. выходов скальных порогов в дне русла), островов, кос.

Водозаборные сооружения нельзя располагать у выпуклого берега, где происходит осаждение наносов, в местах возможного образования шуги и подводного льда, в акватории движения судов, плотов, в створе движения наносов, в зонах зимовья рыбы и т.д.

У места водозабора должны быть спокойные и благоприятные топографические формы берега без крутых косогоров, заливаемых пойм, оврагов и т.д. Водозаборы нельзя располагать в зоне затопления наземных сооружений паводковыми водами, в сейсмических и других районах, где возможны оползневые явления, в результате которых происходит разрушение сооружений.

Важное значение при выборе места расположения водозабора имеют санитарные условия. Место забора воды для водопровода питьевого назначе-

ния должно находиться выше по течению реки от населенных пунктов, животноводческих ферм, выпусков сточных вод, стоянок судов и барж.

Общая схема водозаборных сооружений из поверхностных источников водоснабжения имеет два типа (береговой и русловой), которые различаются между собой местом забора воды относительно берега. Наиболее распространены две компоновки совмещенная и раздельная, отличающихся расположением насосной станции относительно берегового колодца.

Береговой водозабор устраивают при наличии больших глубин вблизи берега и при его крутой форме. Забор воды осуществляется непосредственно у берега.

Русловой водозабор устраивается в том случае, если достаточные для забора воды глубины имеют место на значительном удалении от берега реки, то есть река имеет пологие берега.

Предпочтение следует отдавать схемам руслового и берегового водозаборов с совмещенной компоновкой. Они применяются для водозаборов средней и большой производительности.

Водозаборные сооружения третьего типа - ковшевые, устраиваются для улучшения условий приема воды и уменьшения количества взвешенных веществ в воде. Такой водозабор представляет собой обычный русловой или береговой водозабор, устраиваемый на берегу специального сооружения, называемого "ковшом". В зависимости от направления попадания воды в ковш различают следующие типы ковшовых водозаборов:

- ковш с верхним питанием;
- ковш с нижним питанием;
- ковш с двухсторонним питанием.[4,5].

3. РАЗРАБОТКА КОНСТРУКЦИИ ВОДОЗАБОРНЫХ СООРУЖЕНИЙ И КОМПОНОВКА ОСНОВНОГО ОБОРУДОВАНИЯ.

В соответствии с заданием на проектирование следует выполнить проект речного водозаборного сооружения раздельного типа.

В состав оборудования водозабора входят:

- решетки, защищающие приемные отверстия от попадания в них сора и плавающих тел;
- рыбозаградительные сетки съемные или сетки с промывными устройствами;
- подъемные, транспортные и промывные устройства для подъема и промывания сеток;

- насосы или эжекторы для очистки береговых колодцев от наносов;
- насосы 1-го подъема;
- вспомогательные насосы (дренажные для откачки фильтрата, вакуумные для пуска насосов), а также вентиляторы для создания искусственной циркуляции воздуха;
- подъемные и транспортные приспособления и устройства для монтажа и демонтажа оборудования и коммуникаций;
- электрооборудование;
- затворы (щиты, дроссели, задвижки и т.п.) для управления коммуникациями и оборудованием водозабора;

По взаимному расположению берегового колодца и насосной станции водозабор может быть раздельного и совмещенного типов.

Раздельный тип встречается чаще, так как разлив воды в паводок при пологих берегах достигает значительных размеров, поэтому насосную станцию первого подъема размещают вне зоны затопления, отнеся ее на некоторое расстояние от берега.

В русловых водозаборах для приема воды концы самотечных труб, имеющих на входе расширение в виде раструбов или воронок, выводят в русло реки, и заделывают в специальные бетонные камеры (оголовки) для защиты от повреждений и исключения возможности перемещения по дну. Приемные оголовки могут быть и свайные.

Оголовки русловых водозаборов малой и средней производительности обычно постоянно затоплены и могут быть защищенного и незащищенного типов.

Оголовки незащищенного типа применяют при достаточной глубине и легких условиях забора воды, то есть при заборе воды из несудоходных и нелесосплавных рек. Для уменьшения засорения входные отверстия закрывают решетками.

При заборе воды из судоходных и лесосплавных рек и при значительном количестве наносов, то есть при средних и тяжелых условиях забора воды, применяют оголовки защищенного типа.

4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ СООРУЖЕНИЙ ВОДОЗАБОРА.

4.1. Конструирование оголовка и расчет входных отверстий.

Русловой водозабор состоит из приемного оголовка, самотечной линии и берегового приемного колодца.

В курсовой работе принять оголовок незащищенного типа, так как река несудоходная и не используется для лесосплава. Согласно СНиП 2.04.02-84 верх оголовка должен размещаться ниже кромки льда на расстоянии не менее чем 0.2 м, а низ должен быть выше дна водоема не менее чем на 0.5 м. При выборе места расположения оголовка его намечают на профиле (см. исходные данные) в точке, удовлетворяющей приведенным выше условиям.

Водоприемник чаще устраивают в виде наклонного стояка с воронкой (раструбом). Входные отверстия воронок располагают перпендикулярно течению реки и перекрывают сороудерживающими решетками.

Площадь входных отверстий (${\rm м}^2$) водоприемников определяют, исходя из скорости входа воды с учетом стеснения сороудерживающими решетками, по формуле

F6p=1.25
$$\cdot \frac{q_{pac}}{v_{pax}} \cdot K$$
,

где 1.25 - коэффициент, учитывающий засорение отверстий; $q_{pacч}$ - расчетный расход одной секции, одного трубопровода, m^3/c ;

$$q_{\text{pac}^{\text{u}}} = \frac{\alpha Q_{\text{max cyT}}}{T_1 \cdot 2} , M^3/c ,$$

где α -коэффициент, учитывающий расход воды на собственные нужды водопровода, принимаем α =1.09...1.1; $Q_{max\ cyr}$ -максимальный суточный расход; T1 - продолжительность работы насосной станции первого подъема при круглосуточной работе, (T1=24); 2 - число секций, трубопроводов; V_{Bx} -скорость входа воды в водоприемные отверстия, рекомендуется V_{Bx} =0.1...0.3 м/с; K - коэффициент , учитывающий стеснение отверстий стержнями решетки ;

$$K=(a+c)/a$$

где а - расстояние между стернями в свету , мм. ;с- толщина стержней , мм. (a=30-50 мм, c=6-12 мм)

По полученной площади $F_{\delta p}$ (по приложению табл. №1) принимают стандартную решетку, представляющую собой металлическую раму (из уголков и швеллеров) с металлическими вертикальными стержнями.

Размеры входных отверстий принимаются конструктивно с учетом стандартных размеров решеток. Принятые решетки проверяются на скорость движения воды на случай отключения при аварии одной линии самотечных труб, приняв расход по одной линии $0.7q_{\text{расч.водоз}}$, $\text{м}^3/\text{c}$, $(q_{\text{рас.водоз}}=2\cdot q_{\text{рас,}}\text{м}^3/\text{c})$.

$$V_{\text{BX}} = \frac{1.25 \cdot 0.7 \cdot q_{\text{pac.водоз}} \cdot K}{F_{60}}$$
 , $_{\text{M}/c}$

Полученное значение $V_{\rm BX}$, должно быть не более 0.3 м/с.

4.2. Расчет самотечных линий.

Береговой колодец размещается на берегу в месте, где отметка земли на 1 м.(см. профиль) превышает отметку верхнего уровня воды в источнике (см. профиль). Исходя из надежности работы водозабора, принимают не менее двух самотечных линий, проложенных с обратным уклоном из стальных труб. Стальные трубы хорошо сопротивляются ударам плавающих предметов и не разрушаются при образовании под ними местных временных промоин.

Расчет самотечной линии заключается в определении диаметра водовода и потерь напора в нем, исходя из следующих требований: скорость движения воды должна быть не менее скорости течения в реке при УНВ и не менее незаиляющей скорости 0.7 м/с (СНиП 2.04.02-84) откуда диаметр самотечных труб.

$$d=\sqrt{\frac{q_{pac}}{0.785 \cdot V_{pac}}} , M$$

Принимается стандартный диаметр, округляя полученный по расчету в меньшую сторону, и проверяется скорость движения воды в трубе

$$V = \frac{q_{pac}}{F_{cam}}$$
, $M/c > 0.7 M/c$

4.3. Потери напора в самотечных линиях при УНВ (работа в межень).

Потери напора определяют как сумму потерь на местные сопротивления $\sum h_{\text{мес}}$, поскольку при малой длине трубопровода (самотечных) труб они составляют значительную величину , и потери напора по длине :

$$\sum h_{\text{yHB}} = \sum h_{\text{mec}_1} + h_{\text{дл}};$$
$$\sum h_{\text{mec}_1} = h_1 + h_2 + h_3 + h_4;$$

где h_1 - потери напора в решетке (на входе), принимают h_1 =0.1 м; h_2 - потери на вход ;

$$h_2 = \zeta \frac{v^2}{2 \cdot g};$$

 ζ -коэффициент гидравлического сопротивления при входе в раструб; ζ =0.1; V-скорость движения воды, после сопротивления, м/c; h₃- потери напора в фасонных частях (тройнике) и арматуре (задвижке) на самотечных линиях ζ_{tr} =0.1, ζ_{zadv} =0.1);

$$h_3 = \sum \zeta \frac{v^2}{2 \cdot g} = \frac{(\zeta_{tr} + \zeta_{zadv})}{2 \cdot g} v^2$$
, M

 h_4 - потери напора на выходе (на вход в колодец, $\zeta=1$);

$$h_4 = \zeta \frac{v^2}{2 \cdot g}$$
, M

 $h_{\mbox{\scriptsize дл}}$ - потери напора по длине, определяют при работе двух линий самотечных труб;

$$h_{\text{дл}} = A \cdot K \cdot l \cdot q_{\text{pac}^{-2}}$$
, м

где A - удельное сопротивление, c^2/m^6 (приложение табл.№3); к- поправочный коэффициент (приложение табл. №4); l- длина трубопровода, м (определяется по профилю после назначения места расположения оголовка и берегового колодца)

$$q_{\text{расч}}$$
- расчетный расход , M^3/c .

4.4. Потери напора при аварийной работе водозабора в период отключения одной линии при УНВ.

Согласно СНиП 2.04.02-84 при первой категории надежности и аварийной работе должен быть подан расход не менее 70% расчетного расхода водозабора, определяемого по формуле Q_{ab} =0.7 • q_{pac} , водоз, м3/с.

Тогда скорость при аварии:

$$V_{aB} = \frac{Q_{aB}}{F_{caM}} M/c$$

потери напора:

$$\Sigma h_{a_B} = h_1 + h_2 + h_3 + h_4 + h_{дл}, M$$

см.п 4.3..

4.5. Потери напора при пропуске расчетного расхода водозабора по одной линии в паводок (при УВВ).

Скорость в самотечной линии должна быть больше, чем скорость в реке $V_{\text{реки}}$ при УВВ, поэтому весь расход идет по одной линии (одна отключается).

$$V_{\rm YBB} = \frac{\mathsf{q}_{\mathsf{pac.Bo}\,\mathsf{дo}\,\mathsf{3}}}{\mathsf{F}},\,_{\mathsf{M}}/c,$$

потери напора:

$$\sum h_{\rm VBB} = h_1 + h_2 + h_3 + h_4 + h_{\rm дл}$$
, м;

4.6. Промывка самотечных труб.

При эксплуатации не исключено засорение входных решеток и труб. Для удаления сора и наносов их промывают обратным током воды. Воду на промывку подают по нагнетательной линии от насосной станции.

Скорость промывной воды

$$v_{\text{npom}} = A \cdot (D \cdot d)^{0.25} > 2.5 \text{ m/c},$$

где А- коэффициент, (СНиП 2.04.02-84 A=7.5...10); D- диаметр самотечной линии, м; d- диаметр промывных частиц, мм.

Расход промывной воды

$$q_{\text{пром}} = V_{\text{пром}} \cdot F_{\text{сам}}, M^3/c$$

4.7. Проектирование берегового колодца по высоте.

Между приемным и всасывающим отделениями берегового колодца устанавливают плоскую съемную сетку, размеры которой определяют по скорости V_c прохода воды через ячейки в свету (принимают не более $0.4\,\mathrm{m/c}$ при отсутствии внешних рыбозаградителеи):

$$F_{br} = 1.25 \frac{q_{pac}}{V_{c}} K_{c}$$
.

Зная расход, скорость определяют коэффициент, учитывающий стеснение входа стержнями сеток,

$$K = \left(\frac{a+c}{a}\right)^2$$

где, а- расстояние между проволоками сетки, (2-5 мм); с - диаметр проволоки(1...1.5)мм; Вычисляют F_{br} и принимают стандартную сетку, (приложение табл. №2), скорость входа $V_{вx}$ проверяют с новой площадью подобранной сетки она должна быть не более 0.4 м/c.

Затем проверяют скорость прохождения воды при отключении одной линии самотечных труб (при аварии) V_{aB} . При расчете полученное значение должно быть не более 0.4 м/c, (см.п.4.1., аналогично расчету V_{BX}). В этом случае сетка выбрана правильно.

4.8. Определение размеров берегового колодца в плане.

Размеры колодца в плане назначаются из условия размещения оборудования в приемных и всасывающих секциях (отделениях) и конструктивно принимаются 3; 3,5; 4,0; 4,5 и т.д. метров. Диаметр самотечных труб , тип и размеры промывного оборудования определены выше. Находятся диаметры всасывающих труб. Диаметр всасывающей линии определяется по расчетному расходу одной секции и скорости во всасывающей трубе $V_{\rm BC}$:

$$d_{BC} = \sqrt{\frac{q_{pac}}{0.785 \cdot V_{BC}}},$$

Принимается $V_{BC}=1.5 \text{ м/c}$ ($V_{BC}=1.2...2 \text{ м/c}$).

Полученный диаметр округляют до ближайшего стандартного $d_{\rm Bc}$. Находится диаметр воронки на концах всасывающих труб

$$D_{\text{Bop}} = (1.3...1.5)d_{\text{BC}}$$
, M.

Растояние от дна колодца до раструба всасывающей трубы принимается:

$$h_1$$
=0.8 \cdot $D_{\text{вор}}$; но не менее 0,5

Расстояние от низа раструба всасывающей трубы до самого низкого уровня воды во всасывающем отделении колодца принимается равным:

$$h_2=2 \cdot D_{Bop}$$

Расстояние от стенки колодца до раструба: a=0,7 $D_{\text{вор}}$, расстояние между раструбами: в=1.5 $D_{\text{вор}}$

Из условия монтажа оборудования и эксплуатации назначаем диаметр колодца, толщину стенок принимаем 10% от глубины колодца.

4.9. Определение уровней воды в береговом колодце.

Уровни воды в береговом колодце составят:

В межень (УНВ) при работе двух линий

$$\nabla Z_1 = \nabla Z_{\text{YHB}} - \Sigma h_{\text{YHB}}, M$$

В межень при аварийной работе одной линии

$$\nabla Z_2 = \nabla Z_{YHB} - \Sigma h_{aB}$$
, M

В паводок при работе одной линии

$$\nabla Z_3 = \nabla Z_{\text{YBB}} - \Sigma h_{\text{YBB}}$$
, M.

Отметки уровней воды в отделении всасывающих линий принимают ниже, чем в приемном, на 0.1 м:

$$\nabla Z_1^{\ \ \ } = \nabla Z_1 - 0.1, \, M;$$

$$\nabla Z_2^{\ \ \ } = \nabla Z_2 - 0.1, \, M;$$

$$\nabla Z_3^{\ \ \ \ } = \nabla Z_3 - 0.1 \; , \text{m}.$$

Отметка пола берегового колодца

$$Z_4 = Z_{YBB} + 1, M;$$

Отметка выхода верха самотечных труб в приемное отделение берегового колодца должна быть ниже самого низкого уровня воды в нем не менее чем на 0.3 m:

$$Z_5 = Z_{MIN\Pi PHEM} - 0.3 = Z_2 - 0.3, M.$$

Глубина прокладки самотечных линий в пределах берега должна быть более глубины промерзания, если это условие не соблюдается, то отметка заложения трубы изменяется, опусканием трубы на глубину недосягаемую для промерзания.

Верх сетки между приемным и всасывающим отделениями должен находиться на 0.1 м ниже низшего уровня воды во всасывающем отделении:

$$Z_6 = Z_2^{/} - 0.1$$
, м.

Нижнее основание будет ниже на высоту сетки $P_{c\,(M)}$ на отметке:

$$Z_7 = Z_6 - P_C \ , \ ^{\mathrm{M}}.$$

Отметка дна колодца принимается на 0.5 м ниже, чем отметка нижнего основания сетки

$$Z_8 = Z_7 - 0.5$$
, m.

$$Z_9 = Z_2^{/} - h_2$$
, M.

где h_1 - расстояние между самым низким уровнем воды во всасывающем отделении и низом воронки, м; h_2 расстояние низом воронки и дном колодца, м.

При вычислении отметок отдельных конструкций и оборудования приведенные цифровые значения могут быть изменены в зависимости от конкретных условий размещения оборудования, при этом необходимо учитывать, чтобы высота приемной секции от выхода самотечных труб (∇Z_5) до дна колодца (Z_8) была не менее 1м из условия накопления выпадающих в осадок взвешенных частиц, захваченных из реки водоприемником.

По условиям монтажа оборудования допускается округление отметок.

Для удаления песка и ила первое отделение берегового колодца периодически промывается при помощи эжекторной установки, работающей от напорной линии насосной станции первого подъема.

5. РАСЧЕТ ПОДАЧИ И НАПОРА НАСОСНОЙ СТАНЦИИ ПЕРВОГО ПОДЪЕМА.

Подача насосной станции (м 3 /с) равна расчетному расходу водозабора $q_{\text{расч-водоз}}$.:

$$Q_{ns1} = \frac{\alpha \cdot Q_{\text{max c yT}}}{T_1 \cdot 3600}$$

где T_1 - время работы насосной станции первого подъема, (T_1 =24 часа).

Напор насосов насосной станции:

$$H_H = H_{\Gamma} + \Sigma h_{\delta.K-o.c.}$$

где H_{Γ} - геодезическая высота, м; $\Sigma h_{\text{б.к.-0.c.}}$ - суммарные потери напора при движении воды от берегового колодца до очистных сооружений, м.

$$H_{\Gamma} = Z_{CM} - Z_{minBC} = Z_{CM} - Z_2'$$
,M

где $Z_{\text{см}}$ -отметка воды в смесителе:

$$Z_{CM} = Z_{OC} + (4....4.5), M$$

Z_{ос} – отметка земли очистных сооружений. Отметку земли очистных сооружений принимают в соответствии с исходными данными;

Z_{minвс} - минимальная отметка воды во всасывающем отделении берегового колодца, м;

$$Z_{minBC} = Z_2^{\prime}$$

$$\sum h = h_{\text{BC}} + h_{\text{KOM}} + h_{\text{BOJOM}} + h_{\text{б.к-o.c}} + h_{\text{излив}},$$

где h_{BC} - потери на всасывание, h_{BC} =0,5 м.

 $h_{\text{ком}}$ - потери в коммуникациях насосной станции первого подъема, $h_{\text{ком}}$ =3м.

 $h_{\text{водом}}$ - потери напора в водомере, $h_{\text{водом}}$ =1 м.

 $h_{\text{б.к-o.c}}$ - потери напора при движении воды от берегового колодца до очистных сооружений,

$$h_{\text{б.к-o.c}}=1,1 \cdot h_{\text{дл}}=A \cdot K \cdot l \cdot (q_{\text{в}})^2$$
,м.

 $h_{\mbox{\tiny излив}}$ - потери напора на излив воды на станции водоподготовки , $h_{\mbox{\tiny излив}}$ =1.5 м.

Для определения суммарных потерь необходимо знать диаметр водовода, идущего к очистным сооружениям, который можно вычислить, зная расход и скорость, рекомендуемую в пределах $V_B=0.7...1~\text{m/c}$.

$$q_B = \frac{Q_{H.C.1}}{2}, M^3/c.$$

Принимается две нитки водовода и задается скорость.

Диаметр одной нитки водовода

$$d_B = \sqrt{\frac{q_B}{0.785 \cdot V_B}} , \, \mathbf{M}.$$

Принимается стандартный $d_{\text{в}}$, при этом диаметре необходимо удостовериться что скорость находится в рекомендуемых пределах [3].

Зная диаметр $d_{\scriptscriptstyle B}$ и длину водовода 1 (см. исходные данные), определяют потери напора, $\Sigma h_{\rm 6.\kappa\text{-}o.c.}$ и вычисляют напор насосов 1- го подъема.

6. МЕРОПРИЯТИЯ ПО САНИТАРНОЙ ОХРАНЕ ВОДОЗАБОРА.

Водозабор должен иметь зону санитарной охраны, а проект ее и санитарные мероприятия, проводимые в зоне, должны быть согласованы с органами санитарно-эпидемиологической службы.

В первом поясе - зоне строгого режима размещают все водозаборные сооружения. Здесь запрещаются все виды строительства, проживание людей, купание, выпас скота, рыбная ловля и другие виды занятий. Первый пояс зоны должен иметь военизированную охрану, его границы устанавливают в зависимости от местных санитано-топографических и гидрогеологических условий, но не менее:

200 м от водозабора вверх по течению реки;

100 м вниз по течению;

100 м от уреза воды при наивысшем уровне по прилегающему к водозабору берегу;

вся акватория водоема и 50 м на противоположном берегу при ширине реки до 100 м;

100 м акватории при ширине реки больше 100 м.

Границы второго пояса - пояса ограничений устанавливают с учетом возможного загрязнения водоема стойкими химическими веществами и другими видами загрязнений. Границы второго пояса должны обеспечивать качество воды в источнике согласно ГОСТ 2761-74 "Качество воды в источнике водоснабжения". Такие границы устанавливают:

вверх по течению, исходя из пробега воды от границ пояса до водозабора при расходе 95%-ной обеспеченности в течение 3...5 суток, но не менее одного километра в проточном водоеме и один километр в обе стороны в непроточном водоеме;

вниз по течению не менее 250 м;

боковые границы по водоразделу.

В границах прибрежной полосы водоема на расстоянии не менее 300 м от уреза воды запрещается применение ядохимикатов, органических и минеральных удобрений, авиахимическая обработка, животноводческие фермы располагают не ближе чем на 500 м от линии уреза при наивысшем уровне воды.

приложения

Таблица 1

Съемные сороудерживающие решетки

Размер водпри-	400x600	600x800	800x1000	1000x1200	1200x1400	1260x2000	1250x2500
емного окна, хН							
Размер решетки,	500x700	700x900	930x1130	1100x1320	1300x1520	1424x2200	1424x2700
мм хН							

Таблица 2

Съемные сороудерживающие плоские сетки

Размеры отверстия, мм		Размеры сетки,	MM	
Ширина	Высота	Высота	Ширина	
800x	800	930	930	
	1000	1130		
	1250	1380		
	1500	1630		
1000x	800	930	1130	
	1000	1130		
	1250	1380		
	1500	1630		
	2000	2130		
	2500	2630		
1250x	100	1130	1380	
1500x	800	930	1630	
	1000	1130		
	1250	1380		
	1500	1630		
	2000	2130		
	2500	2630		
1750x	1000	1130	1820	
	1500	1630		
	2000	2130		
	2500	2630		
2000x	200	930	2130	
	1000	1130		
	1500	1380		
	2000	1630		
	2500	2130		

Удельные сопротивления А для стальных труб.

Таблица 3

		Новые трубы при v=1м/с			Неновые трубы при v>1.2м/с		
Условный	Наружный	d_p ,мм	A, c^2/M^6	$B, c^2/M^3$	dp, мм	$A, c^2/M^6$	$B, c^2/M^6$
проход	диаметр						
d_y , мм	$d_{H_{2}}$ MM						
100	108	102	224.249	12.447	101	328.395	12.726
125	133	126	74.326	8.177	125	106.09	8.308
150	159	152	27.884	5.619	151	38.969	5.697

		Новые трубы при v=1м/с		Неновые трубы при v>1.2м/с			
Условный проход d _y , мм	Наружный диаметр d _{н,} мм	d _p ,мм	$A, c^2/M^6$	B, c^2/M^3	dp, мм	$A, c^2/M^6$	B, c^2/M^6
200	219	211	5.023	2.916	210	6.785	2.944
250	273	265	1.527	1.849	264	2.0147	1.863
300	325	315	0.6187	1.308	315	0.79114	1.308
350	377	367	0.2784	0.964	367	0.36202	0.964
400	426	414	0.1483	0.757	414	0.18587	0.757
450	480	468	0.07816	0.593	468	0.09705	0.593
500	530	518	0.04598	0.484	518	0.05667	0.484
600	630	616	0.01859	0.342	616	0.02262	0.342
700	720	704	0.009253	0.262	704	0.01115	0.262
800	820	804	0.004622	0.201	804	0.005514	0.201
900	920	900	0.002563	0.16	900	0.003034	0.16
1000	1020	1000	0.001478	0.13	1000	0.001735	0.13

Таблица 4 Поправочные коэффициенты К к значениям удельных сопротивлений A

V,	Трубы			V,	Трубы			
м/с					м/с		_	
	сталь-	чугун-	неновые	асбесто-		сталь-	чугун-	асбес-
	ные	ные	стальные	цемент-		ные	ные	тоце-
	новые	новые	и чугун-	ные		новые	новые	мент-
			ные					ные
0.2	1.244	1.462	1.41	1.308	1.4	0.972	0.938	0.953
0.3	1.163	1.317	1.28	1.217	1.5	0.968	0.927	0.944
0.4	1.113	1.226	1.20	1.158	1.6	0.965	0.917	0.936
0.5	1.081	1.192	1.15	1.115	1.7	0.961	0.907	0.928
0.6	1.057	1.115	1.115	1.082	1.8	0.958	0.899	0.922
0.7	1.039	1.078	1.085	1.056	1.9	0.954	0.891	0.916
0.8	1.021	1.047	1.06	1.034	2.0	0.951	0.884	0.91
0.9	1.011	1.021	1.04	1.016	2.2	0.946	0.871	0.9
1.0	1.000	1.000	1.03	1.000	2.4	0.941	0.861	0.891
1.1	0.993	0.988	1.015	0.986	2.6	0.937	0.851	0.883
1.2	0.986	0.965	1.00	0.974	2.8	0.934	0.843	0.876
1.3	0.979	0.951	1.00	0.963	3.0	0.932	0.836	0.87

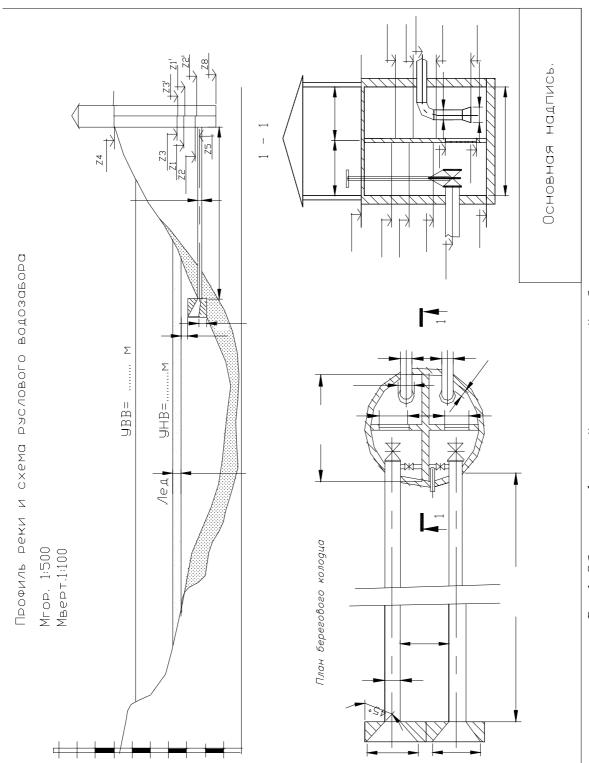


Рис.1. Образец графической части курсовой работы.

ЛИТЕРАТУРА

- 1. В.Н.Смагин, К.А. Небольсина, В.М. Беляков., Курсовое и дипломное проектирование по сельскохозяйственному водоснабжению . М.; ВО "Агропромиздат", 1990, 336 с.
- 2. А.С.Москвитин, Справочник по специальным работам. Трубы, арматура и оборудование водопроводно-канализационным сооружениям. 2-е издание переработанное. М.; 1970.
- 3. Ф.А.Щевелев, А.Ф.Щевелев. Таблицы для расчета водопроводных труб. Справочное пособие. М.; Стройиздат, 1984.
- 4. А.Е. Белан, П.Д. Хоружий. Проектирование и расчет устройств водоснабжения. Киев. Будивельник, 1981.
- 5. В.С. Оводов. Сельскохозяйственное водоснабжение и обводнение. 3-е издание переработанное и дополненное. -М; Колос, 1984.
- 6. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения.-М; 1985.
- 7. Б.В. Карасев. Насосные и воздуходувные станции. Минск. Высшая школа. 1990.

Учебное издание

Составители: Житенев Борис Николаевич, Бахур Николай Федорович, Мороз Владимир Валентинович.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ:

«Водоснабжение»,

Раздел: «Водозаборные сооружения» для студентов специальности 70 04 03 "Водоснабжение, водоотведение и охрана водных ресурсов" заочной формы обучения

Ответственный за выпуск: Житенев Б.Н.

Редактор: Строкач Т.В. Корректор: Никитчик Е.В.

Подписано к печати 5.03.2002 г. Формат $60x84^{-1}/_{16.}$ Бумага «Чайка». Усл. п. л. 1,4. Уч. изд.

Подписано к печати 5.03.2002 г. Формат 60х84 ¹/₁₆. Бумага «Чайка». Усл. п. л. 1,4. Уч. изд. л. 1,5. Тираж 120 экз. Заказ № 231. Отпечатано на ризографе учреждения образования «Брестский государственный технический университет». 224017, Брест, ул. Московская, 267.