
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ

Задания

к расчетно-проектировочным работам по дисциплине «Строительная механика» для студентов специальностей 1-70 02 01 «Промышленное и гражданское строительство», 1-70 03 01 «Автомобильные дороги»

Брест 2010

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ

Задания

к расчетно-проектировочным работам по дисциплине «Строительная механика» для студентов специальностей 1-70 02 01 «Промышленное и гражданское строительство», 1-70 03 01 «Автомобильные дороги»

УДК 624.04

В методической разработке представлены задания к расчетно-проектировочным работам по дисциплине «Строительная механика» для студентов специальностей 1-70 02 01 «Промышленное и гражданское строительство» и 1-70 03 01 «Автомобильные дороги» дневной формы обучения.

Задания разработаны в соответствии с типовой учебной программой по дисциплине «Строительная механика» для студентов специальности 1-70 02 01 «Промышленное и гражданское строительство», утвержденной 30.06.2010, регистрационный № ТД-J.066/тип.

.

Составители: В.И. ИГНАТЮК, доцент, к. т. н., И.С. СЫРОКВАШКО, доцент, к. т. н.

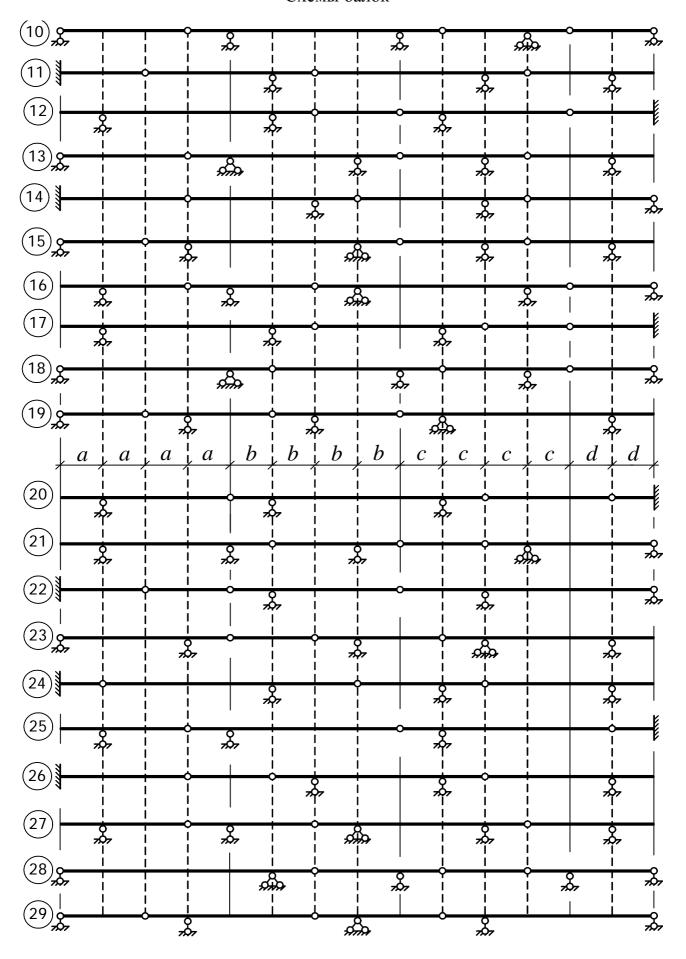
Рецензент: зам. директора филиала УП «БелНИИС» – «Научно-технический центр», к. т. н. В. Н. ДЕРКАЧ

[©] Учреждение образования «Брестский государственный технический университет», 2010

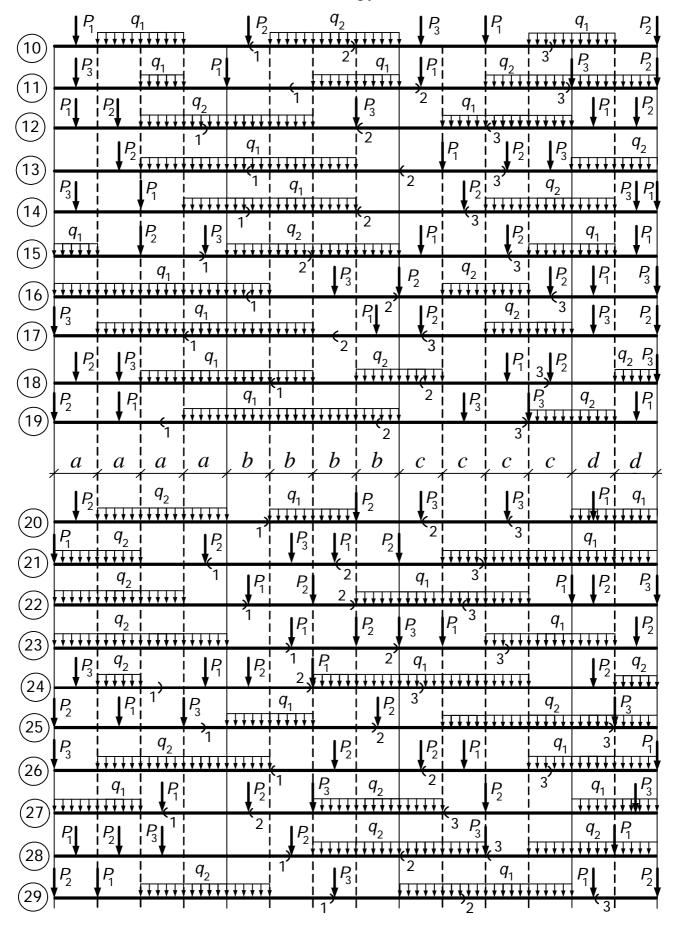
ЗАДАНИЕ № 1

Расчет статически определимой многопролетной балки и простой рамы

Задача 1. Расчет многопролетной балки


- *Требуется:* 1. Выполнить кинематический анализ и составить поэтажную схему многопролетной балки.
 - 2. Рассматривая равновесие отдельных балок, определить все опорные реакции.
 - 3. Построить эпюры изгибающих моментов и поперечных сил.
 - 4. Построить линии влияния двух опорных реакции (по выбору) и линии влияния изгибающих моментов и поперечных сил в указанных сечениях 1, 2, 3.
 - 5. По линиям влияния определить усилия в указанных сечениях 1, 2, 3 и сравнить их с результатами, полученными по эпюрам, указав абсолютную и относительную погрешности расхождений.

Исходные данные к расчету многопролетных балок

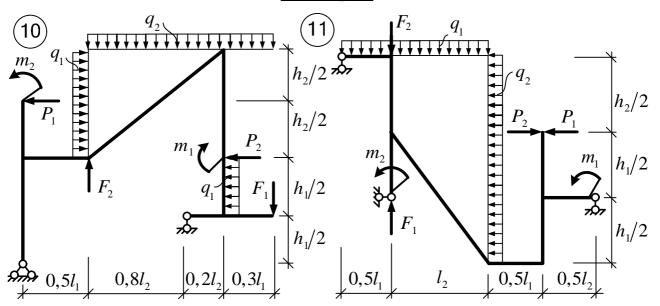

Таблица 1

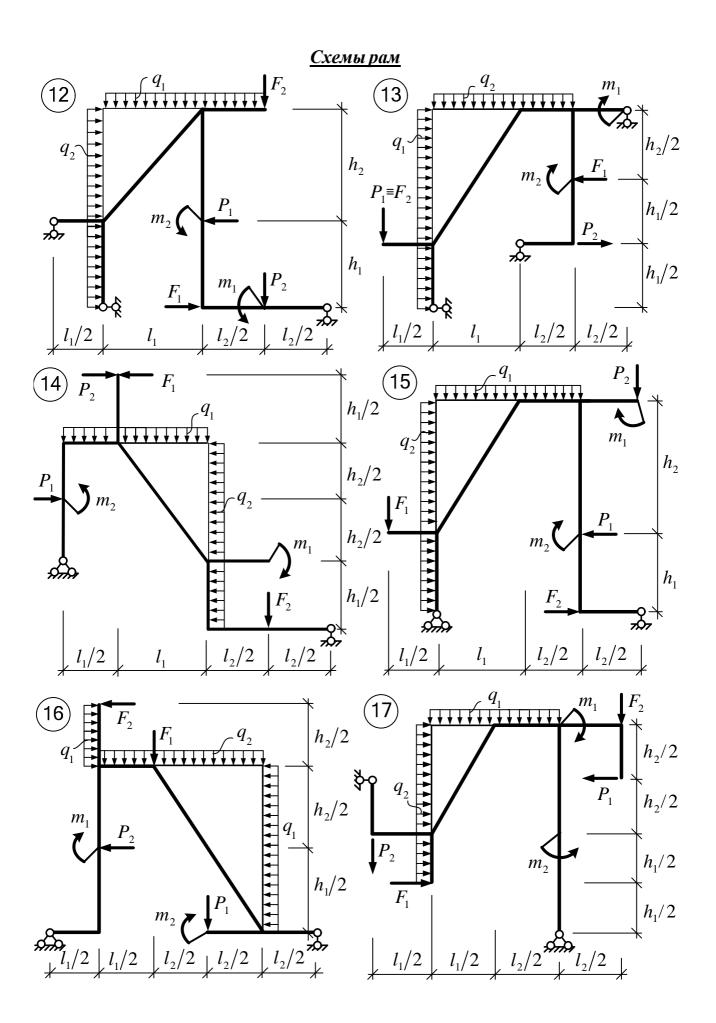
Первая циф- ра шрифта	Первая цифра схемы балки	а, м	<i>P</i> ₁ , кН	Вторая циф- ра шифра	Вторая циф- ра схемы балки	<i>b</i> , м	P_2 , кН	Третья цифра шифра	Первая цифра схемы нагрузки	С, М	<i>P</i> ₃ , кН	$q_1, rac{\kappa H}{M}$	Четвертая цифра шифра	Вторая цифра схемы нагрузки	<i>d</i> , м	$q_{_{2}}, \ rac{\kappa H}{M}$
1	1	1,4	5,6	1	1	1,5	10	1	1	1,5	12	1,1	1	1	1,4	3,0
2	2	1,5	5,4	2	2	1,6	11	2	2	1,6	10,6	1,2	2	2	1,5	2,7
3	1	1,6	5,8	3	3	1,8	9,5	3	1	1,8	10,3	1,5	3	3	1,6	2,5
4	2	1,8	6,0	4	4	2,0	9,0	4	2	2,0	10	1,7	4	4	1,8	2,2
5	1	2,0	6,2	5	5	2,1	8,5	5	1	2,1	9,6	2,0	5	5	2,0	2,0
6	2	2,2	6,5	6	6	2,2	8,0	6	2	2,2	9,3	2,2	6	6	2,1	1,8
7	1	2,4	6,7	7	7	2,4	7,5	7	1	2,4	9,0	2,5	7	7	2,2	1,6
8	2	2,6	7,0	8	8	2,6	7,0	8	2	2,5	8,6	2,6	8	8	2,4	1,4
9	1	2,8	7,5	9	9	2,7	10,5	9	1	2,8	8,0	1,8	9	9	2,5	1,2
0	2	3,0	8,0	0	0	2,8	12	0	2	3,0	7,5	1,4	0	0	2,6	1,5

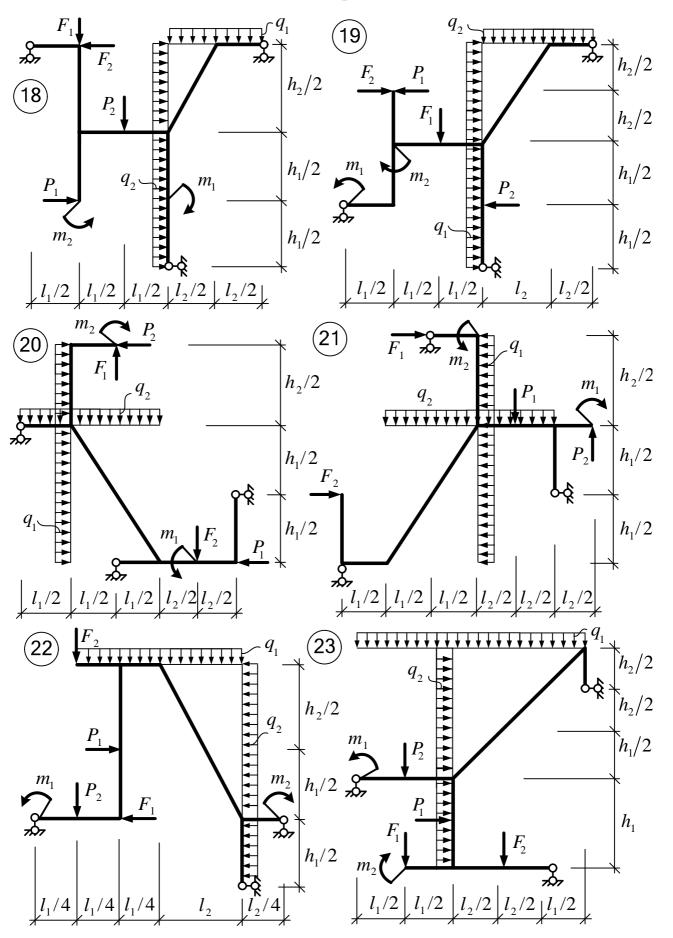
Схемы балок

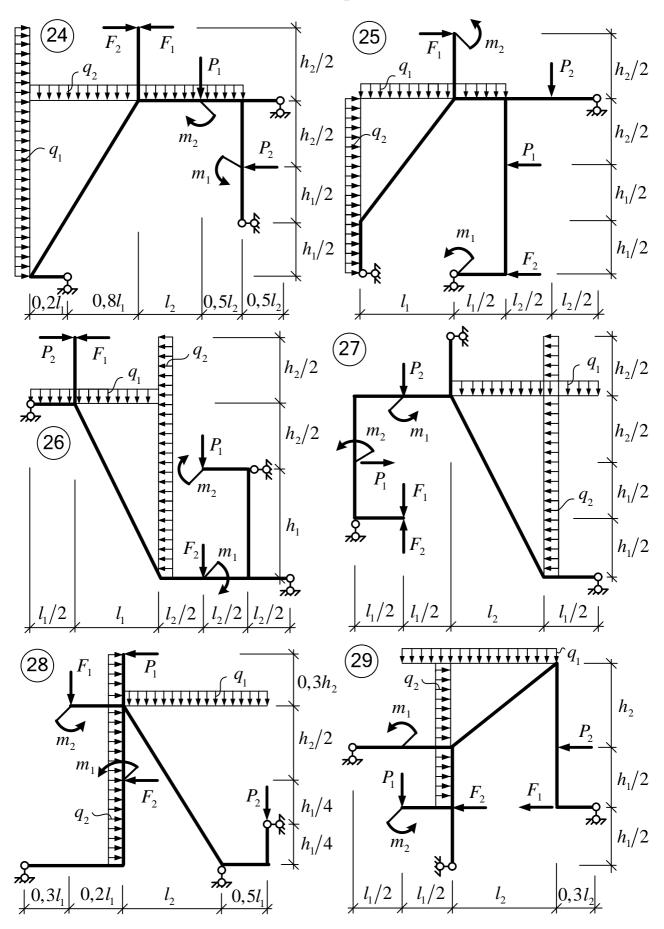
Схемы нагрузок

Задача 2. Расчет простой рамы


Требуется: Определить опорные реакции, проверить их, и построить эпюры внутренних сил M, Q и N. Проверить равновесие узлов и качественное выполнение известных закономерностей в изменении эпюр усилий.


Таблица 2 Исходные данные для рам


h_1 ,	<i>F</i> ,	ая цифра ифра	ая цифра иы рамы	<i>i</i> ₁ ,	Р,	ья цифра ифра	с нагрузок F, q, m	ι_2 ,	<i>q</i> , кН	ртая цифра шифра	h_2 ,	m,
M	кН	рая ии	pas ME	M	кН	ТЬЯ ШИ	KC,	M	M	тру ши	M	кН∙м


Первая цифр: шифра	Первая цифра схемы рамы	$h_{\!\scriptscriptstyle 1}^{},$ M	<i>F</i> , кН	Вторая цифра шифра	Вторая цифра схемы рамы	l_1 , M	<i>Р</i> , кН	Третья цифра шифра	Индекс нагруз P, F, q, m	l_2 ,	$\frac{q}{\text{KH}}$	Четвертая циф шифра	h_2 ,	<i>т</i> , кН∙м
1	1	4,0	5	1	1	4,4	15	1	1	8,0	2,4	1	5,6	36
2	2	4,2	6	2	2	4,6	14	2	2	7,6	2,6	2	5,4	40
3	1	4,4	7	3	3	4,8	12	3	1	7,2	2,8	3	5,2	44
4	2	4,6	8	4	4	5,0	11	4	2	7,0	3,0	4	5,0	48
5	1	4,8	9	5	5	5,2	10	5	1	6,4	3,2	5	4,8	50
6	2	5,0	10	6	6	5,4	9	6	2	6,0	3,4	6	4,6	54
7	1	5,2	11	7	7	5,6	8	7	1	5,6	3,6	7	4,4	56
8	2	5,4	12	8	8	5,8	6	8	2	5,2	3,8	8	4,2	60
9	1	5,5	13	9	9	6,0	5	9	1	5,0	4,0	9	4,0	62
0	2	5,6	14	0	0	6,4	4	0	2	4,8	4,2	0	4,5	64

Примечание: На раму действует только одна из двух связанных между собой комбинаций нагрузок P, F, q, m, обозначенных соответственно индексами 1 и 2 и определяющихся индексом нагрузок, взятым из таблицы согласно шифру.

ЗАДАНИЕ № 2

Расчет трехшарнирной арки и составной рамы

Задача 3. Расчет трехшарнирной арки Требуется:

1. Определить вручную опорные реакции и внутренние силы M, Q, N в сечении K_1 , показанном на схеме загружения, и в сечении K_2 , положение которого определяется зависимостями:

$$x_{K2} = x_{K1} + 0,45 l,$$
 если $x_{K1} < l/2,$ или $x_{K2} = x_{K1} - 0,45 l,$ если $x_{K1} > l/2.$

- 2. Вычислить усилия во всех сечениях трехшарнирной арки в соответствии с заданным шагом с помощью ЭВМ и построить эпюры M, Q, N в арке. Проверить качественное выполнение известных закономерностей в изменении эпюр усилий, при необходимости откорректировать форму эпюр в промежутках между расчетными сечениями.
 - 3. Построить линии влияния M, Q, N в сечении K_1 .
- 4. Определить M, Q, N в сечении K_1 от заданной нагрузки по линиям влияния и сопоставить их со значениями, найденными в пункте 1.


Таблица 3 Таблица исходных данных для арки

Первая цифра шифра	Очертание оси арки	q_1 , $\frac{\mathrm{KH}}{\mathrm{M}}$	Вторая цифра шифра	<i>l</i> , м	q_2 , $\frac{\mathrm{KH}}{\mathrm{M}}$	Третья цифра шифра	$\frac{f}{l}$	<i>P</i> ₁ , кН	Четвертая цифра шифра	Номер загружения	<i>P</i> ₂ , кН
1	П	2,2	1	28	2,8	1	0,40	12	1	1	34
2	СИН	1,8	2	30	2,4	2	0,28	18	2	2	46
3	Э	2,6	3	38	3,6	3	0,20	20	3	3	32
4	Γ	1,4	4	34	2,0	4	0,15	22	4	4	30
5	О	2,8	5	26	2,6	5	0,35	24	5	5	44
6	П	1,6	6	24	4,0	6	0,25	16	6	6	42
7	СИН	2,0	7	32	3,8	7	0,18	28	7	7	40
8	Э	2,4	8	22	3,4	8	0,32	26	8	8	36
9	Γ	1,2	9	36	3,2	9	0,30	14	9	9	38
0	O	1,0	0	40	3,0	0	0,38	10	0	0	48

<u>Примечание:</u> 1. Число участков разбивки пролета арки должно быть не менее 12, при этом дополнительно обязательно рассчитываются характерные сечения (слева и справа от точек приложения сосредоточенных сил).

2. Расчет арки может выполняться как с помощью ЭВМ – по программе «Arka3», так и полностью вручную.

Расчётная схема арки и варианты ее нагружения

Геометрические характеристики трехшарнирных арок определяются следующими зависимостями:

а) для круговых арок (в таблице 3 обозначены буквой О - окружность):

$$R = \frac{4f^{2} + l^{2}}{8f}; \qquad y = \sqrt{R^{2} - (l/2 - x)^{2}} - R + f;$$

$$\sin j = \frac{l - 2x}{2R}; \qquad \cos j = \frac{y + R - f}{R} = \sqrt{1 - \sin^{2} j};$$

б) для параболических арок (в таблице 3 обозначены буквой П):

$$y = \frac{4f}{l^2}x(l-x); \qquad tg\mathbf{j} = y' = \frac{4f}{l^2}(l-2x);$$

$$\cos\mathbf{j} = \frac{1}{\sqrt{1+tg^2\mathbf{j}}}; \qquad \sin\mathbf{j} = tg\mathbf{j} \cdot \cos\mathbf{j}; \qquad (1)$$

в) для синусоидальных арок (в таблице 3 обозначены буквами СИН):

$$y = f \sin \frac{p x}{l};$$
 $tg\mathbf{j} = y' = \frac{p f}{l} \cos \frac{p x}{l};$ $\sin \mathbf{j}$ и $\cos \mathbf{j} \rightarrow \text{см.}$ (1);

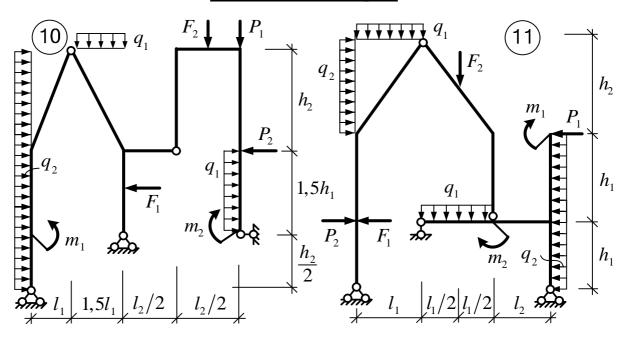
г) для эллиптических арок (в таблице 3 обозначены буквой Э):

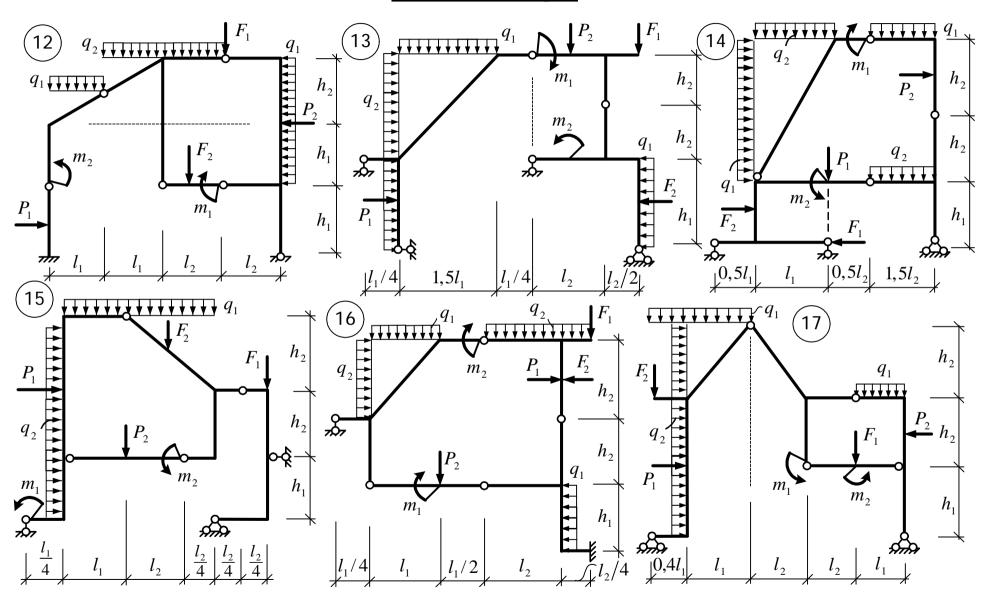
$$y = k\sqrt{a^2 - (l/2 - x)^2} - ka + f;$$
 $tg\mathbf{j} = y' = \frac{k(l/2 - x)}{\sqrt{a^2 - (l/2 - x)^2}};$

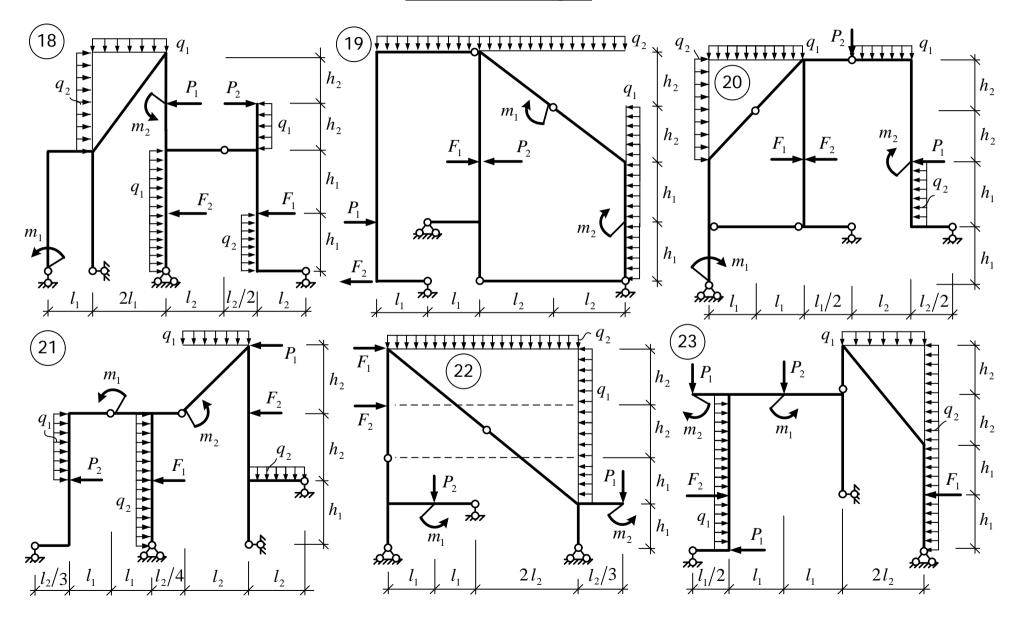
где
$$a = \frac{f}{2k} + \frac{kl^2}{8f};$$
 $k = \frac{4f}{l};$ $\sin j$ и $\cos j \rightarrow$ см. (1);

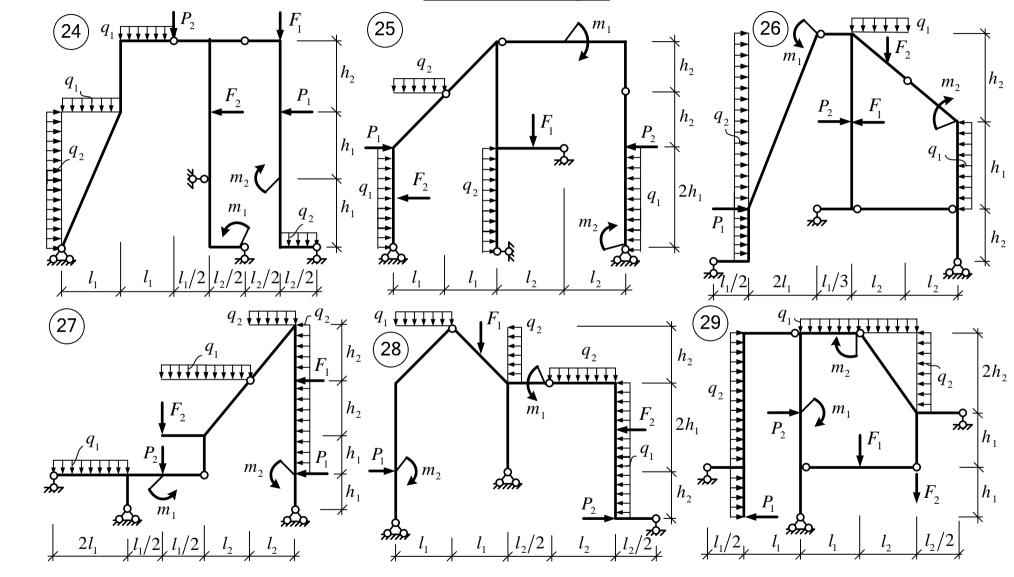
д) для гиперболических арок (в таблице 3 обозначены буквой Γ):

$$y=f+a-\sqrt{rac{\left(l/2-x
ight)^2}{k^2}+a^2}\,; \qquad tgm{j}=y'=rac{\left(l/2-x
ight)}{k^2\sqrt{rac{\left(l/2-x
ight)^2}{k^2}+a^2}}\,;$$
 где $a=rac{l^2}{8k^2\,f}-rac{f}{2}\,; \qquad k=rac{l}{n\,f}\,; \qquad \sinm{j}$ и $\cosm{j}
ightarrow$ см. (1).


Задача 4. Расчет составной рамы


Требуется:


- 1. Выполнить кинематический анализ рамы, составив схему взаимодействия ее элементов.
- 2. Определить опорные реакции и необходимые усилия во внутренних шарнирах и связях рамы.
 - 3. Построить эпюры внутренних сил M, Q и N.
- 4. Проверить равновесие узлов и качественное выполнение известных закономерностей в изменении эпюр усилий.


	Tuotinga neaogiibia gainibia giin coctabilon paivibi													
Первая цифра шифра	Первая цифра схемы рамы	l_1 , M	<i>F</i> , кН	Вторая цифра шифра	Вторая цифра схемы рамы	l_2 ,	<i>Р</i> , кН	Третья цифра шифра	Индекс на- грузок	h_1 ,	<i>q</i> , <u>кН</u> м	Четвертая цифра шифра	$h_2,$ M	<i>т</i> , <u>кН</u> м
1	1	2,4	16	1	1	2,4	6	1	1	2,5	2,0	1	2,4	28
2	2	2,6	15	2	2	2,6	7	2	2	2,6	2,2	2	2,5	32
3	1	2,8	14	3	3	2,8	8	3	1	2,8	2,4	3	2,6	25
4	2	3,0	12	4	4	3,0	9	4	2	3,0	2,6	4	2,7	27
5	1	3,2	11	5	5	3,2	10	5	1	2,7	2,8	5	2,8	18
6	2	3,4	10	6	6	3,4	11	6	2	2,9	3,0	6	2,9	20
7	1	3,6	9	7	7	3,6	12	7	1	2,4	3,2	7	3,0	22
8	2	3,8	8	8	8	3,8	14	8	2	3,1	3,4	8	3,1	24
9	1	4,0	7	9	9	4,0	15	9	1	3,2	3,6	9	3,2	26
0	2	4,2	6	0	0	4,2	16	0	2	3,3	4,0	0	3,3	30

Примечание: На раму может действовать только одна из двух комбинаций нагрузок (P_1, q_1, m_1, F_1) или (P_2, q_2, m_2, F_2) , номер которой, соответствующий индексу этих нагрузок, определяется по третьей цифре шифра. Сосредоточенные силы P_1 , F_1 , P_2 , F_2 , приложенные в пределах участков стержня, для которых не указаны размеры до точек их действия, считаются приложенными в средних точках соответствующих участков.

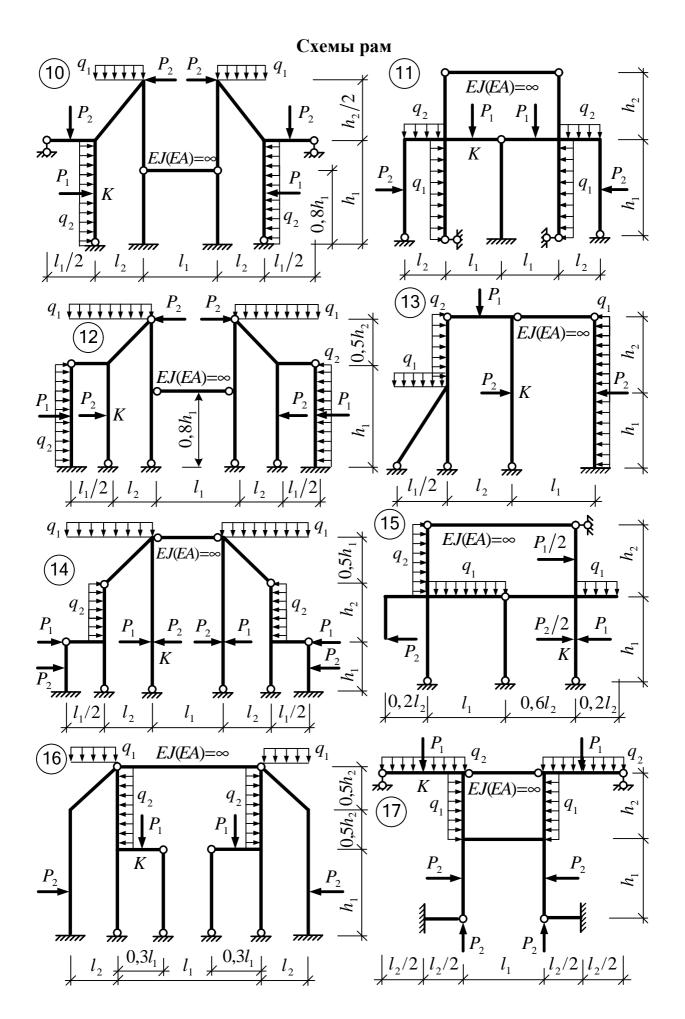
ЗАДАНИЕ № 3

Расчет статически неопределимой рамы методом сил

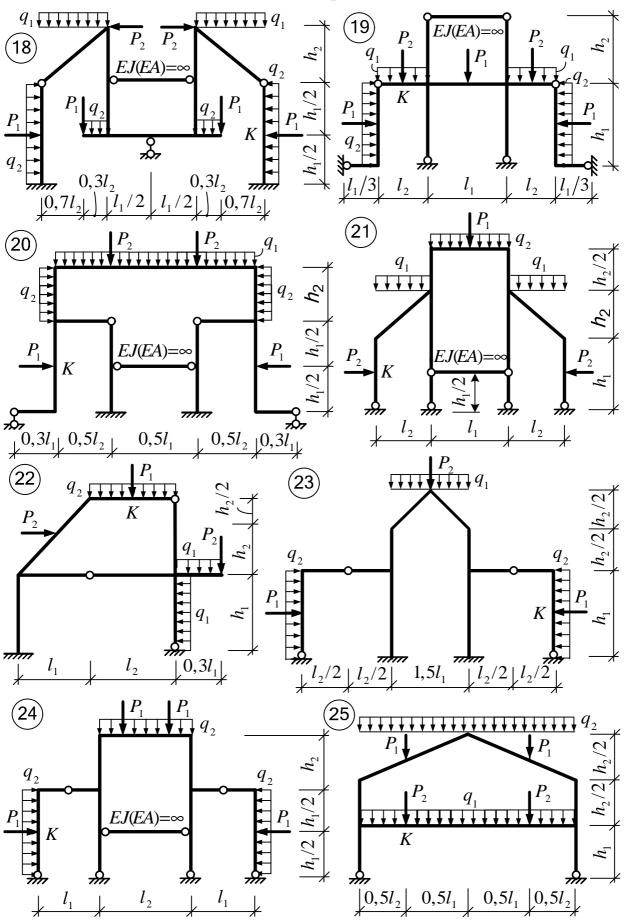
- 1. Определить степень статической неопределимости рамы.
- 2. Выбрать расчётную основную систему метода сил, предварительно показав три варианта основных систем метода сил.
 - 3. Записать систему канонических уравнений метода сил в общем виде.
- 4. В основной системе метода сил построить эпюры изгибающих моментов от действия единичных значений основных неизвестных (усилий в отброшенных связях) и внешней нагрузки.
- 5. Вычислить единичные и грузовые перемещения в основной системе метода сил и выполнить их проверки.
 - 6. Решить систему канонических уравнений и проверить её решение.
 - 7. Построить эпюру изгибающих элементов в исходной раме.
 - 8. Выполнить деформационную проверку эпюры изгибающих элементов.
 - 9. Построить эпюры поперечных и продольных сил в исходной раме.
 - 10. Выполнить статическую проверку равновесия рамы.
 - 11. Определить перемещение точки K.

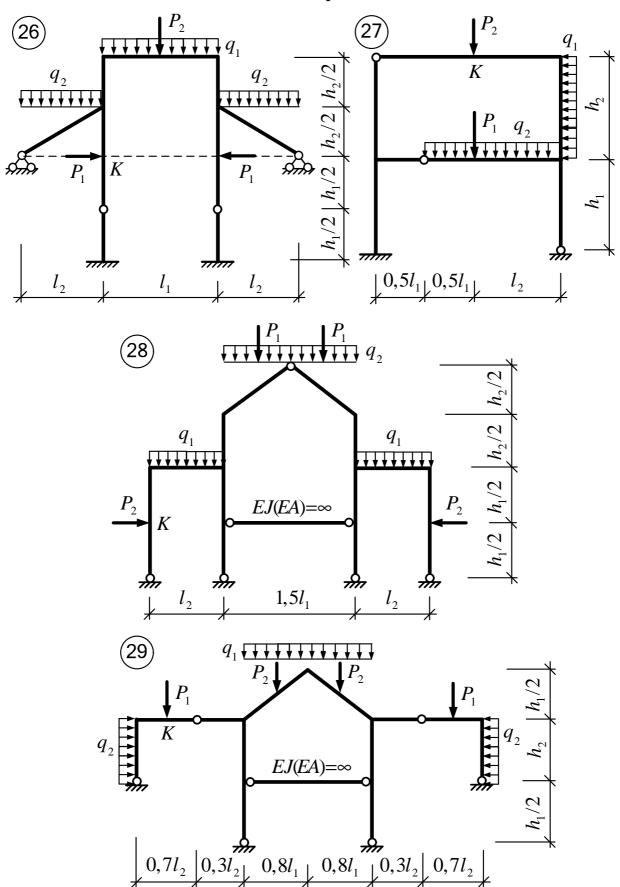
Таблица исходных данных

Таблица 5


Первая цифра шифра	Первая цифра номера рамы	l_1 ,	Вторая цифра шифра	Вторая цифра номера рамы	l_2 ,	<i>Р</i> , кН	Третья цифра шифра	$h_{1,\mathrm{M}}$	<i>q</i> , <u>кН</u> м	$rac{oldsymbol{J}_2}{oldsymbol{J}_1}$	Четвертая цифра шифра	Индекс нагрузок	h_2 ,	$rac{{m J}_3}{{m J}_1}$
1	1	5,0	1	1	7,5	7,0	1	4,0	1,2	1,5	1	1	3,8	1,2
2	2	5,5	2	2	8,0	8,0	2	4,5	1,4	2,0	2	2	4,0	1,4
3	1	6,0	3	3	8,5	9,0	3	5,0	1,6	2,5	3	1	4,2	1,6
4	2	6,5	4	4	9,0	10,0	4	5,5	1,8	3,0	4	2	4,4	1,8
5	1	7,0	5	5	9,5	11,0	5	6,0	2,8	3,5	5	1	4,6	2,0
6	2	10,5	6	6	10,0	12,0	6	3,6	2,0	4,0	6	2	4,8	2,2
7	1	11,0	7	7	6,0	13,0	7	5,6	2,2	4,5	7	1	5,0	2,4
8	2	11,5	8	8	7,0	14,0	8	4,8	2,5	5,0	8	2	5,2	2,6
9	1	12,0	9	9	6,5	15,0	9	5,2	2,7	5,5	9	1	5,4	2,8
0	2	9,0	0	0	5,0	8,5	0	4,2	3,0	6,0	0	2	5,6	3,0

Примечание. 1. Жесткости вертикальных стержней (стоек) для всех рам равны EJ_1 , жесткости горизонтальных стержней показаны (J_2, J_3) на схемах.


2. На раму может действовать только одна из двух комбинаций нагрузок (P_1, q_1) или (P_2, q_2) , определяемая согласно индексу нагрузок.


Сосредоточенные силы (моменты), действующие на стержни, (если не указаны размеры до точек их действия) прикладываются:

- в серединах участков стержней, если действует одна сила;
- разбивают участки на три равные части, если действуют две силы.

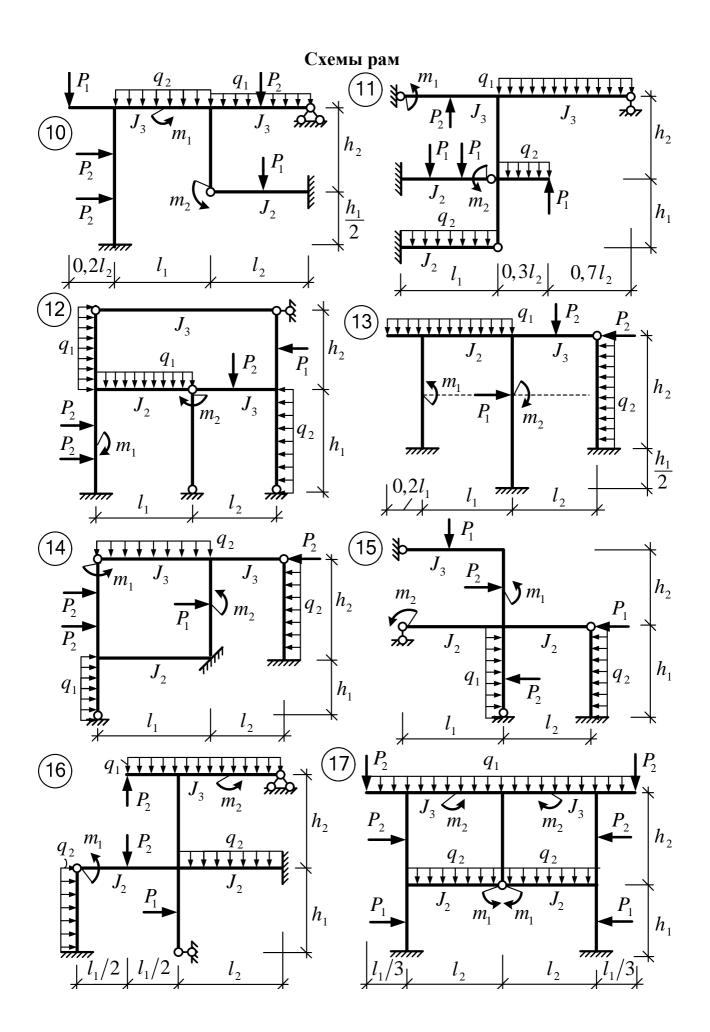
ЗАДАНИЕ № 4

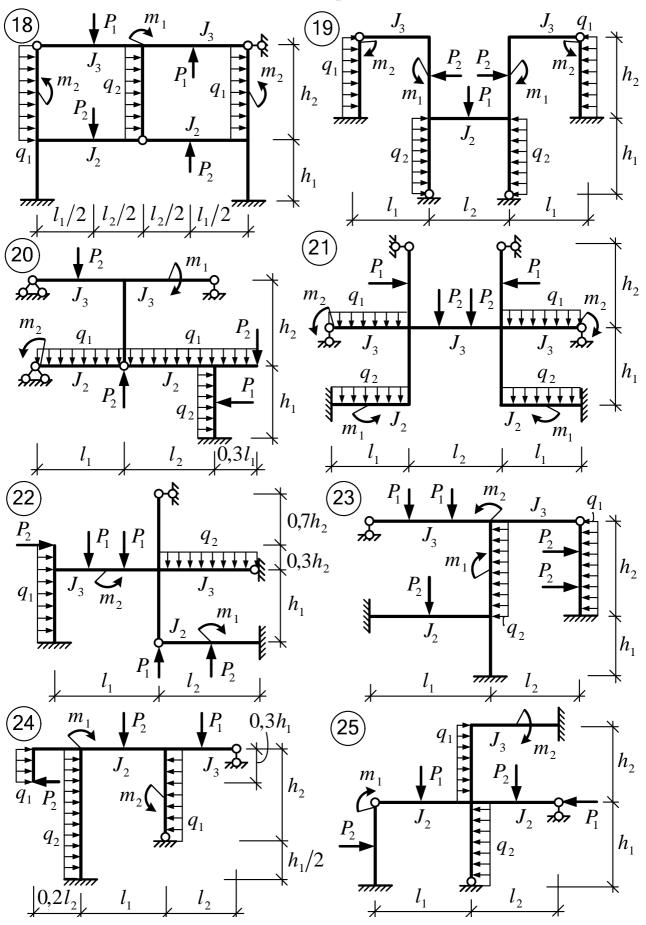
Расчет статически неопределимой рамы методом перемещений *Требуется*:

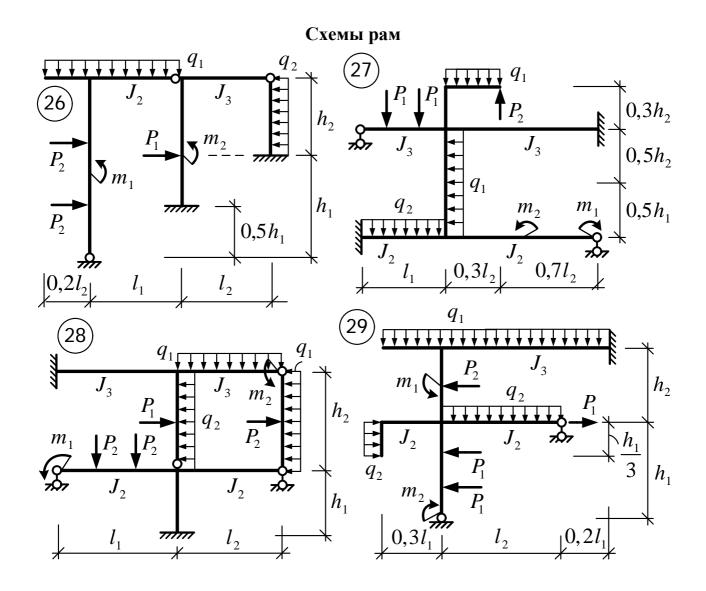
- 1. Установить степень кинематической неопределимости рамы.
- 2. Показать основную систему метода перемещений.
- 3. Записать систему канонических уравнений в общем виде.
- 4. Построить эпюры изгибающих моментов от действия единичных значений основных неизвестных (перемещений узлов) и внешней нагрузки в основной системе метода перемещений.
- 5. Вычислить коэффициенты при неизвестных и свободные члены канонических уравнений.
 - 6. Решить систему канонических уравнений и проверить её решение.
 - 7. Построить эпюру изгибающих моментов M в исходной раме.
 - 8. Выполнить статическую и деформационную проверки эпюры M.
 - 9. Построить эпюры поперечных и продольных сил в исходной раме.
- 10. Выполнить проверки равновесия узлов рамы и статическую проверку равновесия всей рамы.

Исходные данные

Таблица 6


Первая цифра шифра	Первая цифра номера рамы	l_1 ,	т, кН .м	Вторая цифра шифра	Вторая цифра номера рамы	$l_2,$ M	<i>Р</i> , кН	Третья цифра шифра	$h_1, \ _{ m M}$	<i>q</i> , <u>кН</u> м	$oxed{J_2 \over J_1}$	Четвертая цифра шифра	Индекс нагрузок	h_2 ,	$\frac{J_3}{J_1}$
1	1	5,0	20	1	1	7,5	7,0	1	4,0	1,2	1,5	1	1	3,8	1,2
2	2	5,5	30	2	2	8,0	8,0	2	4,6	1,4	2,0	2	2	4,0	1,4
3	1	6,0	35	3	3	8,5	9,0	3	5,0	1,6	2,5	3	1	4,2	1,6
4	2	6,5	70	4	4	9,0	10,0	4	5,4	1,8	3,0	4	2	4,4	1,8
5	1	7,0	55	5	5	9,5	11,0	5	6,0	2,8	3,5	5	1	4,6	2,0
6	2	7,5	60	6	6	10,0	12,0	6	6,4	2,0	4,0	6	2	4,8	2,2
7	1	8,0	25	7	7	6,0	13,0	7	4,2	2,2	4,5	7	1	5,0	2,4
8	2	8,5	45	8	8	7,0	14,0	8	4,8	2,5	5,0	8	2	5,2	2,6
9	1	9,0	50	9	9	6,5	15,0	9	4,4	2,7	5,5	9	1	5,5	2,8
0	2	9,5	40	0	0	5,0	8,5	0	5,6	3,0	6,0	0	2	6,0	3,0


Примечание: 1. Жесткости вертикальных стержней (стоек) для всех рам равны EJ_1 , жесткости горизонтальных стержней показаны (J_2, J_3) на схемах.

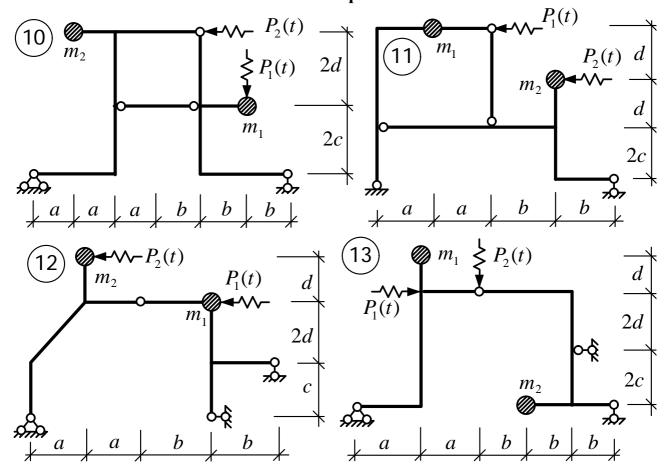

2. На раму может действовать только одна из двух комбинаций нагрузок (P_1, q_1, m_1) или (P_2, q_2, m_2) , определяемая согласно индексу нагрузок.

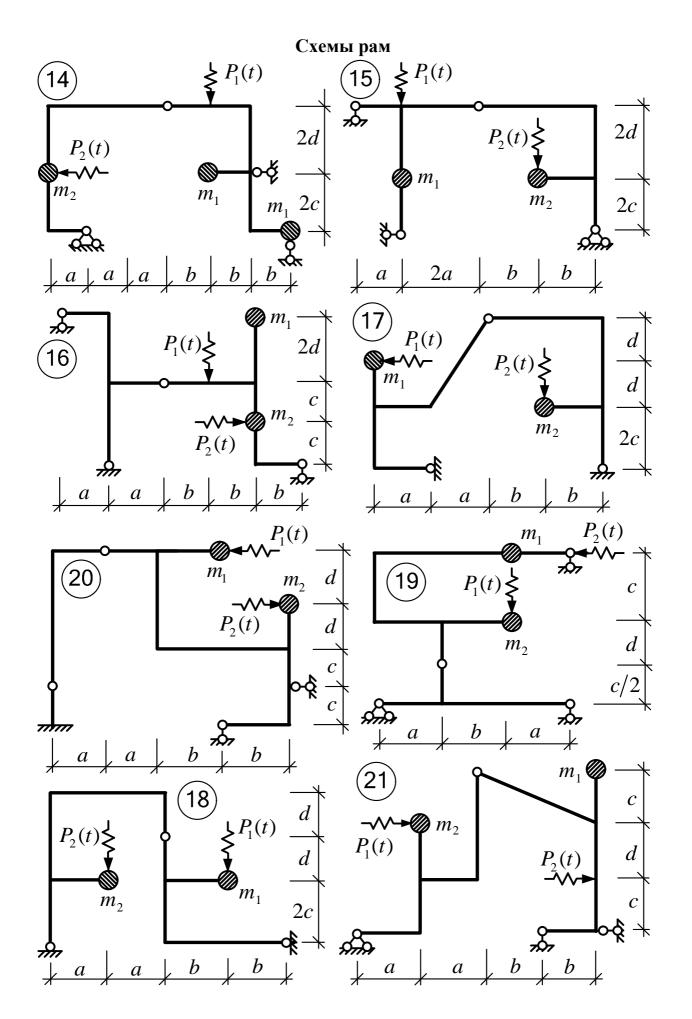
Сосредоточенные силы (моменты), действующие на стержни, (если не указаны размеры до точек их действия) прикладываются:

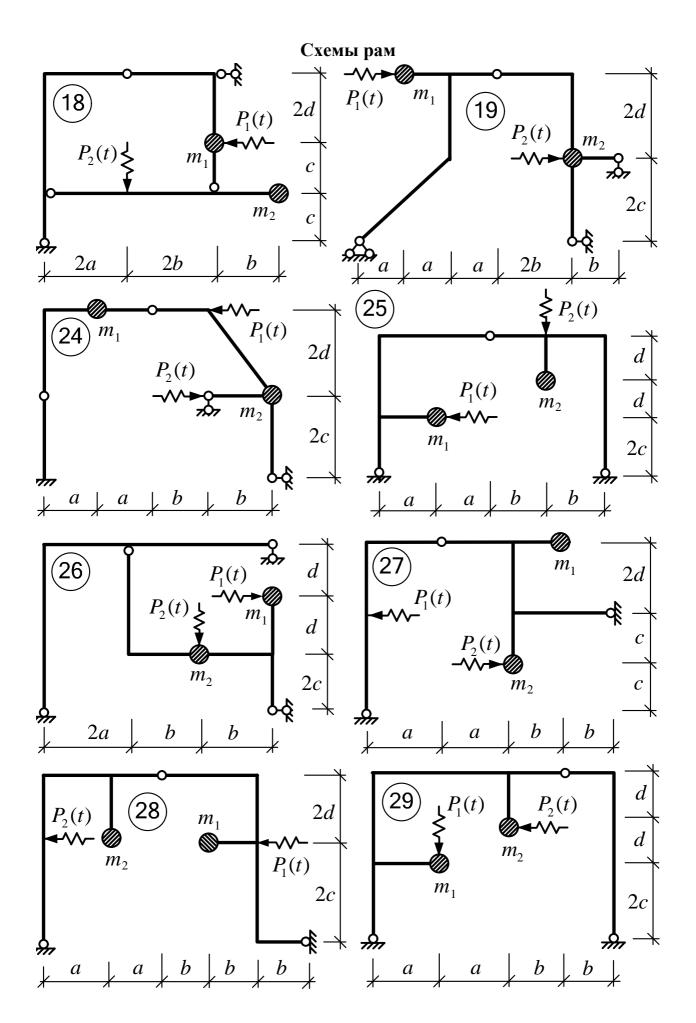
- в серединах участков стержней, если действует одна сила (момент);
- разбивают участки на три равные части, если действуют две силы.

ЗАДАНИЕ № 5 Расчет рамы на динамические воздействия

<u>Требуется:</u>


- 1. Определить степень свободы системы (с позиции динамики сооружений).
 - 2. Определить частоты свободных колебаний системы.
 - 3. Вычислить частоту вибрационной нагрузки $q = k \cdot w_{\min}$.
 - 4. Определить амплитудные значения инерционных сил.
- 5. Построить динамические эпюры изгибающих моментов, поперечных и продольных сил (с учетом собственного веса масс).
 - 6. Выполнить статическую проверку равновесия рамы.


Примечание:


- 1. В расчете рамы используется только одна из масс (m_1 либо m_2), принимаемая по индексу массы (по третьей цифре шифра), и одна из сил (P_1 либо P_2), принимаемая по индексу нагрузки (по четвертой цифре шифра).
 - 2. Силы $P_1(t)$ и $P_2(t)$ изменяются по гармоническому закону $P_i \sin \theta t$.

Исходные данные

Первая цифра шрифта	Первая цифра схемы рамы	а, м	$\frac{m}{\frac{\mathrm{KH}\cdot\mathrm{c}^2}{\mathrm{M}}}$	Вторая цифра шифра	Вторая цифра схемы рамы	<i>b</i> , м	k	Третья цифра шифра	<i>С</i> , М	Индекс массы	$EJ10^{\text{-2}},\mathrm{kH}\square_{\mathrm{M}}^{2}$	Четвертая цифра шифра	Индекс нагрузки	<i>d</i> , м	<i>Р</i> , кН
1	1	1,5	1,8	1	1	1,6	0,58	1	1,5	1	95	1	1	1,6	2,0
2	2	1,8	2,2	2	2	1,8	0,55	2	1,7	2	115	2	2	1,8	2,5
3	1	2,0	2,5	3	3	2,0	0,72	3	2,0	1	110	3	1	2,0	3,0
4	2	2,2	1,5	4	4	2,2	0,70	4	2,2	2	125	4	2	2,2	3,5
5	1	2,5	1,0	5	5	2,4	0,68	5	2,4	1	135	5	1	2,4	4,0
6	2	2,7	2,4	6	6	2,6	0,66	6	2,6	2	130	6	2	2,6	4,5
7	1	3,0	2,0	7	7	2,8	0,64	7	2,8	1	120	7	1	2,8	5,0
8	2	3,3	1,6	8	8	3,0	0,62	8	3,0	2	105	8	2	3,0	5,5
9	1	3,5	1,2	9	9	3,2	0,60	9	3,2	1	100	9	1	3,2	6,0
0	2	3,8	1,4	0	0	3,4	0,56	0	3,4	2	90	0	2	3,4	6,5

СОДЕРЖАНИЕ

1. Задание № 1. Расчет статически определимой многопролетной	
балки и простой рамы	. 3
1.1. Задача 1. Расчет многопролетной балки	3
1.2. Задача 2. Расчет простой рамы	6
2. Задание № 2. Расчет трехшарнирной арки и составной рамы	
2.1. Задача 3. Расчет многопролетной балки	10
2.2. Задача 4. Расчет составной рамы	12
3. Задание № 3. Расчет статически неопределимой рамы методом сил	17
4. Задание № 4. Расчет статически неопределимой рамы методом пере-	
мещений	21
5. Задание № 5. Расчет рамы на динамические воздействия	24

Учебное издание

Составители: Игнатюк Валерий Иванович Сыроквашко Иван Степанович

Задания

к расчетно-проектировочным работам по дисциплине «Строительная механика» для студентов специальности
1-70 02 01 «Промышленное и гражданское строительство»

Ответственный за выпуск Игнатюк В.И. Редактор Строкач Т.В. Компьютерный набор и верстка Игнатюк В.И. Корректор Никитчик Е.В.

Подписано к печати 30.11.2010. Формат 60×84/16. Бумага Снегурочка. Гарнитура Times New Roman. Усл. печ. л. 1,63. Уч.-изд. л. 1,75. Тираж 100 зкз. Заказ № 1192. Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.